
doi: 10.6342/NTU202101397

國立臺灣大學電機資訊學院電子工程學研究所

博士論文
Graduate Institute of Electronics Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Doctoral Dissertation

論隨機布林可滿足性：

決策程序、廣義化、與應用

Stochastic Boolean Satisfiability:

Decision Procedures, Generalization, and Applications

李念澤

Nian-Ze Lee

指導教授：江介宏博士

Advisor: Jie-Hong Roland Jiang, Ph.D.

中華民國 110 年 7 月

July 2021

doi: 10.6342/NTU202101397

doi: 10.6342/NTU202101397

doi: 10.6342/NTU202101397

doi: 10.6342/NTU202101397

Acknowledgements

First of all, I want to thank my advisor Prof. Jie-Hong Roland Jiang for guiding

me through the journey in pursuit of a Ph.D. degree. Roland’s passion for research

has pushed me to the best that I can achieve. He dedicated much of his time to our

collaboration, and many good ideas followed from our discussions. I also want to

thank my oral-defense committee members, Prof. Dirk Beyer, Prof. Ichiro Hasuo,

Dr. Victor N. Kravets, and Dr. Bow-Yaw Wang for reviewing this dissertation and

giving me much feedback during the oral defense.

A big thank you goes to all of my coauthors. I have learned a lot from our

collaboration and enjoyed working with you. Especially, I want to thank Yen-Shi,

with whom I developed much of the work in this dissertation. I also want to thank

my fellow students at ALCom-Lab. The time we spent together in the lab was a

lifetime memory and supported me at some difficult moments during my study.

Furthermore, I want to thank Victor, Ichiro, and Dirk for giving me opportunities

to work at their institutes. The experience of working in a different research group

made my Ph.D. study more colorful and memorable. I also want to thank the

colleagues at IBM, the ERATO MMSD project, and SoSy-Lab for helping me adapt

to a new environment and enjoy the research and life abroad. Particularly, I want

to thank Chau-Chin for working and having fun together at IBM. My first working

experience abroad would not have been so comfortable without his company. I want

to thank Paolo and Shaukat for leading me into a new research field when I started at

the ERATO MMSD project, and Jérémy for all the unforgettable moments we spent

i

doi: 10.6342/NTU202101397

together in OLDMAN. I want to thank Martin for helping me find an apartment in

Munich, and sharing an office with him is a great pleasure. I am very grateful to

Philipp, who helped me a lot during the pandemic lockdown. Without his advice,

my visit to Germany could not have been so fruitful and productive. The concepts

and skills I learned from him also helped me during the writing of the dissertation.

Finally, I want to thank my parents for their endless love and support. I also

want to say sorry to them because I might not always be together with them when

they need me.

李念澤

Nian-Ze Lee

National Taiwan University

July 2021

ii

doi: 10.6342/NTU202101397

論論論隨隨隨機機機布布布林林林可可可滿滿滿足足足性性性：：：

決決決策策策程程程序序序、、、廣廣廣義義義化化化、、、與與與應應應用用用

研研研究究究生生生: 李李李念念念澤澤澤 指指指導導導教教教授授授: 江江江介介介宏宏宏 博博博士士士

國國國立立立臺臺臺灣灣灣大大大學學學電電電子子子工工工程程程學學學研研研究究究所所所

摘摘摘要要要

隨機布林可滿足性（SSAT）是一種豐富的邏輯語言， 可用於表達具有機率

性的計算問題， 例如貝氏網絡推論， 命題式機率性規劃， 和部分可觀察馬可

夫決策過程（POMDP）。 求解SSAT公式之複雜度屬於多項式空間完全性複雜

度類別（PSPACE-complete complexity class）， 與求解量化布林公式（QBF）

相同。 儘管具有廣泛的應用和深刻的理論價值， SSAT在文獻中所引起的關注

較SAT或QBF稀少。

我們在機率性設計的正規驗證問題中找到SSAT的新應用。 機率性設計以及近

似性設計是一種新興的計算準則， 可用來容忍VLSI系統在奈米製程下的元件變

異性。 儘管相關文獻對近似性設計進行了許多探討， 機率性設計則很少受到關

注。 我們為機率性設計提出了機率性質評估框架並利用隨機存在和存在隨機的量

化SSAT公式求解， 分別進行平均情況和最壞情況分析。 據我們所知，這是文獻

中首次將SSAT應用於VLSI系統分析。

受以上VLSI系統應用的推動， 我們提出了新的演算法來求解隨機存在和存在

隨機的量化SSAT公式。 不同於基於Davis-Putnam-Logemann-Loveland（DPLL）

iii

doi: 10.6342/NTU202101397

搜尋的傳統SSAT演算法， 我們利用當代SAT或QBF求解技術和模型計數以提高

計算效率。 與之前基於DPLL搜尋的準確SSAT演算法不同， 我們的演算法能夠

近似地求解SSAT公式，計算其滿足機率的上下限。

我們在開源SSAT求解器reSSAT和erSSAT中實作所提出的新演算法。 實驗結

果顯示reSSAT和erSSAT求解器的性能優於文獻中的SSAT求解器。 在文獻中的求

解器無法計算出準確答案的情況下，它們也能提供有用的上下限。

儘管在不同領域都有許多應用，SSAT仍受限於其PSPACE complexity class的

描述能力。 更複雜的問題，例如非確定指數時間完全性（NEXPTIME-

complete）的分散式POMDP（decentralized POMDP, Dec-POMDP），則無法

用SSAT簡潔地表示。 為了提供此類問題一個邏輯框架，我們借鏡了同

為NEXPTIME-complete的依賴性QBF（dependency QBF, DQBF）。 我們推

廣SSAT並命名該推廣框架為依賴性SSAT（dependency SSAT, DSSAT），同

時證明DSSAT也是NEXPTIME-complete。 我們展示了DSSAT在機率或近似性設

計的合成中的潛在應用，以及針對Dec-POMDP問題的編碼。 我們希望通過建立

理論基礎來鼓勵DSSAT求解器的開發。

關關關鍵鍵鍵字字字: 隨隨隨機機機布布布林林林可可可滿滿滿足足足性性性問問問題題題、、、 模模模型型型計計計數數數、、、 依依依賴賴賴性性性量量量化化化布布布林林林公公公式式式、、、 非非非

確確確定定定指指指數數數時時時間間間完完完全全全性性性、、、 機機機率率率性性性或或或近近近似似似性性性設設設計計計、、、 分分分散散散式式式部部部份份份可可可觀觀觀察察察馬馬馬可可可夫夫夫決決決策策策

過過過程程程

iv

doi: 10.6342/NTU202101397

Stochastic Boolean Satisfiability:

Decision Procedures, Generalization, and

Applications

Student: Nian-Ze Lee Advisor: Dr. Jie-Hong Roland Jiang

Graduate Institute of Electronics Engineering

National Taiwan University

Abstract

Stochastic Boolean satisfiability (SSAT) is an expressive language to formulate com-

putational problems with randomness, such as the inference of Bayesian networks,

propositional probabilistic planning, and partially observable Markov decision pro-

cess (POMDP). Solving an SSAT formula lies in the PSPACE-complete complexity

class, the same as solving a quantified Boolean formula (QBF). Despite its broad ap-

plications and profound theoretical values, SSAT has drawn relatively less attention

compared to SAT or QBF.

We identify new applications of SSAT in the formal verification of probabilistic

design. Probabilistic design, as well as approximate design, is an emerging compu-

tational paradigm to accept the device variability of VLSI systems in the nanometer

regime, which imposes serious challenges to the design and manufacturing of reliable

v

doi: 10.6342/NTU202101397

systems. Despite recent intensive study on approximate design, probabilistic design

receives relatively few attentions. We formulate the framework of probabilistic prop-

erty evaluation for probabilistic design and exploit random-exist and exist-random

quantified SSAT solving to approach the average-case and worst-case analyses, re-

spectively. To the best of our knowledge, this is the first attempt that applies SSAT

to analyze VLSI systems.

Motivated by the above emerging applications, we propose novel algorithms to

solve random-exist and exist-random quantified SSAT formulas. These two frag-

ments of SSAT have important AI applications in the reasoning of Bayesian net-

works and the search of an optimal strategy for probabilistic conformant planning.

In contrast to the conventional SSAT-solving approaches based on Davis-Putnam-

Logemann-Loveland (DPLL) search, we take advantage of modern techniques for

SAT/QBF solving and model counting to improve the computational efficiency.

Moreover, unlike the prior DPLL-based exact algorithms for SSAT solving, the pro-

posed algorithms are able to solve an SSAT formula approximately by deriving upper

or lower bounds of its satisfying probability.

The proposed algorithms are implemented in the open-source SSAT solvers

reSSAT and erSSAT. Our evaluation shows that reSSAT and erSSAT solvers out-

perform the state-of-the-art SSAT solver on various formulas in both run-time and

memory usage. They also provide useful bounds for cases where the state-of-the-art

solver fails to compute exact answers.

In spite of its various applications, SSAT is limited by its descriptive power within

vi

doi: 10.6342/NTU202101397

the PSPACE complexity class. More complex problems, such as the NEXPTIME-

complete decentralized POMDP (Dec-POMDP), cannot be succinctly encoded with

SSAT. To provide a logical formalism for such problems, we extend the dependency

quantified Boolean formula (DQBF), a representative problem in the NEXPTIME-

complete class, to its stochastic variant, named dependency SSAT (DSSAT), and

show that DSSAT is also NEXPTIME-complete. We demonstrate potential ap-

plications of DSSAT in the synthesis of probabilistic/approximate design and the

encoding of Dec-POMDP problems. We hope to encourage solver development with

the established theoretical foundations.

Keywords: Stochastic Boolean satisfiability (SSAT); Model count-

ing; Dependency quantified Boolean formula (DQBF); NEXPTIME-

completeness; Probabilistic/Approximate design; Decentralized partially

observable Markov decision process (Dec-POMDP)

vii

doi: 10.6342/NTU202101397

doi: 10.6342/NTU202101397

Contents

Acknowledgements i

Chinese Abstract iii

Abstract v

List of Figures xv

List of Tables xvii

List of Algorithms xix

1 Introduction 1

1.1 Motivation and the research needs . 1

1.2 Our contributions . 5

1.3 An overview of the dissertation . 8

1.4 Data availability statement . 10

2 Related Work 11

2.1 Probabilistic/Approximate design . 11

ix

doi: 10.6342/NTU202101397

Contents

2.2 Stochastic Boolean satisfiability . 14

2.3 Model counting . 15

3 Background 19

3.1 Propositional logic . 19

3.1.1 Conjunctive and disjunctive normal forms 20

3.1.2 Boolean satisfiability . 21

3.2 Stochastic Boolean satisfiability . 23

3.3 Model counting . 25

3.3.1 Exact/Approximate model counting 25

3.3.2 Weighted model counting . 25

4 Probabilistic Design Evaluation 27

4.1 Preliminaries . 28

4.1.1 Boolean network . 28

4.1.2 Probability and random variables 29

4.2 Modeling probabilistic design . 30

4.2.1 Probabilistic Boolean network 31

4.2.2 Probabilistic property evaluation 32

4.2.3 Extension to sequential probabilistic design 35

4.3 Solving probabilistic property evaluation 36

4.3.1 Solving MPPE and PPE via SSAT 36

4.3.2 Solving PPE via weighted model counting 43

x

doi: 10.6342/NTU202101397

Contents

4.3.3 Solving PPE via probabilistic model checking 48

4.4 Discussion . 50

4.4.1 Probabilistic equivalence checking 50

4.4.2 Prioritized output requirement 52

4.4.3 Connection to approximate design analysis 52

4.5 Evaluation . 53

4.5.1 Benchmark set . 54

4.5.2 Experimental setup . 57

4.5.3 Results . 58

5 Random-Exist Quantified SSAT 69

5.1 Preliminaries . 69

5.1.1 Generalization of SAT/UNSAT minterms 70

5.2 Solving random-exist quantified SSAT 71

5.2.1 Minimal satisfying assignment 74

5.2.2 Minimal conflicting assignment 75

5.2.3 Weight computation . 75

5.2.4 Modification for approximate SSAT 76

5.3 Applications . 79

5.3.1 Probability of success in planning 80

5.3.2 Probabilistic circuit verification 80

5.4 Evaluation . 80

5.4.1 Benchmark set . 81

xi

doi: 10.6342/NTU202101397

Contents

5.4.2 Experimental setup . 83

5.4.3 Results . 84

6 Exist-Random Quantified SSAT 93

6.1 Preliminaries . 93

6.1.1 Solving E-MAJSAT with weighted model counting 94

6.1.2 Clause selection . 94

6.2 Clause-containment learning for E-MAJSAT 96

6.2.1 Clause-strengthening heuristics 101

6.2.2 Implementation details . 109

6.3 Evaluation . 111

6.3.1 Benchmark set . 111

6.3.2 Experimental setup . 113

6.3.3 Results . 114

7 Dependency SSAT 127

7.1 Preliminaries . 127

7.1.1 Dependency quantified Boolean formula 127

7.1.2 Decentralized POMDP . 129

7.2 Lifting SSAT to NEXPTIME-completeness 132

7.2.1 Formulation . 132

7.2.2 Complexity proof . 134

7.3 Applications of DSSAT . 136

xii

doi: 10.6342/NTU202101397

Contents

7.3.1 Analyzing probabilistic/approximate partial design 137

7.3.2 Modeling Dec-POMDP . 141

8 Conclusion and Future Work 151

Bibliography 155

xiii

doi: 10.6342/NTU202101397

doi: 10.6342/NTU202101397

List of Figures

1.1 The contributions of this dissertation in a nutshell 5

4.1 Distillation of a nand gate with an error rate p 31

4.2 A miter SPBN for probabilistic property evaluation 34

4.3 A miter SPBN for probabilistic equivalence checking 51

5.1 Quantile plots of random k-CNF formulas 85

5.2 Quantile plots of strategic-company formulas 87

5.3 Run-time scatter plots of strategic-company formulas with reSSAT in

y-axis and compared approaches in x-axis 88

6.1 Quantile plots of random k-CNF formulas 115

6.2 Quantile plots of application formulas 117

6.3 Run-time scatter plots of application formulas with erSSAT in y-axis

and compared approaches in x-axis 119

7.1 A two-agent Dec-POMDP example 130

7.2 A miter for the equivalence checking of probabilistic partial design . . 138

xv

doi: 10.6342/NTU202101397

LIST OF FIGURES

7.3 The formulas used to encode a Dec-POMDP M 145

7.4 The derivation of the induction case in the proof of Theorem 7.3 . . . 146

7.5 A Dec-POMDP example with two agents and h = 2 148

xvi

doi: 10.6342/NTU202101397

List of Tables

2.1 Model-counting variants and their corresponding SSAT formulas . . . 16

3.1 Summary of the symbols used in the dissertation 26

4.1 Circuit statistics of ISCAS benchmark suite 55

4.2 Circuit statistics of EPFL benchmark suite 56

4.3 Miter statistics of ISCAS benchmark suite (δ = 0.01) 57

4.4 Miter statistics of ISCAS benchmark suite (δ = 0.1) 58

4.5 Miter statistics of EPFL benchmark suite (δ = 0.01) 59

4.6 Miter statistics of EPFL benchmark suite (δ = 0.1) 60

4.7 Solving PEC by various techniques (δ = 0.01) 62

4.8 Solving PEC by various techniques (δ = 0.1) 63

4.9 Solving MPEC by various techniques (δ = 0.01) 66

4.10 Solving MPEC by various techniques (δ = 0.1) 67

5.1 Solving process of Alg. 4 on Example 5.2 78

5.2 Summary of the results for 60 strategic-company formulas 86

xvii

doi: 10.6342/NTU202101397

LIST OF TABLES

5.3 Summary of the results for 60 PEC formulas 89

5.4 Results of solving the PEC formulas (δ = 0.01) 91

5.5 Results of solving the PEC formulas (δ = 0.1) 92

6.1 Solving process of Alg. 5 on Example 6.2 100

6.2 The families of the application formulas 112

6.3 Summary of the results for 212 application formulas 116

6.4 Results of solving the Conformant family 124

6.5 Results of solving the Max-Count family 125

6.6 Results of solving the MPEC family 126

xviii

doi: 10.6342/NTU202101397

List of Algorithms

1 BDD-based SSAT solving: BddSsatSolve 38

2 The recursive step of BddSsatSolve: BddSsatRecur 39

3 Formula rewriting for unweighted model counting: WmcRewriting . . 45

4 Solving random-exist quantified SSAT formulas 73

5 Solving exist-random quantified SSAT (E-MAJSAT) formulas 98

6 Subroutine of Alg. 5: SelectMinimalClauses 103

7 Subroutine of Alg. 5: RemoveSubsumedClauses 105

8 Subroutine of Alg. 5: DiscardLiterals 108

xix

doi: 10.6342/NTU202101397

doi: 10.6342/NTU202101397

Chapter 1

Introduction

1.1 Motivation and the research needs

Boolean satisfiability (SAT) [10] has been successfully applied to numerous research

fields including artificial intelligence [89, 99], electronic design automation [77, 114],

software verification [7, 48], etc. The tremendous benefits have encouraged the devel-

opment of more advanced decision procedures for satisfiability with respect to more

complex logics beyond pure propositional. For example, solvers for majority SAT

(MAJSAT) decide whether the majority of the assignments satisfy a propositional

formula, and its functional problem is known as model counting [42]; quantified

Boolean formula (QBF) [13, 88] allows both existential and universal quantifiers;

stochastic Boolean satisfiability (SSAT) [69, 72] models uncertainty with random-

1

doi: 10.6342/NTU202101397

1.1. Motivation and the research needs

ized quantification; dependency QBF (DQBF) [5, 104] equips Henkin quantifiers to

describe multi-player games with partial information; and solvers of the satisfiabil-

ity modulo theories (SMT) [6, 29] accommodate first order logic fragments. Due to

their simplicity and generality, various satisfiability formulations are under active

investigation.

Among various generalizations of Boolean satisfiability, stochastic Boolean satis-

fiability (SSAT) [72] is a logical formalism for problems endowed with randomness.

First formulated by Papadimitriou, SSAT is interpreted as games against nature [92].

Nondeterministic factors are introduced into the world of propositional logic through

the creation of the randomized quantifier. A Boolean variable x can be randomly

quantified with a probability p ∈ [0, 1] in an SSAT formula by a randomized quan-

tifier

Rp that requires x to take the Boolean value true with probability p and

false with probability 1 − p. Via randomized quantifiers, a variety of computa-

tional problems inherent with uncertainty can be encoded into SSAT formulas, such

as propositional probabilistic planning [68], Bayesian-network inference [3, 24, 47],

and the analysis of partially observable Markov decision process (POMDP) [75].

While SSAT has been employed to solve various AI problems, to the best of our

knowledge, it has not yet been applied to analyze VLSI systems, and how VLSI

systems would benefit from the probabilistic reasoning of SSAT remains unclear.

Conventionally, uncertain system behavior is undesirable and would be mitigated

by employing techniques such as error detection [22] and error correction [83]. Nev-

2

doi: 10.6342/NTU202101397

1.1. Motivation and the research needs

ertheless, in the post-Moore’s era, the variability and uncertainty of manufacturing

at the atomic level make devices under miniaturization sensitive to process varia-

tion and environmental fluctuation. As a result, the manufactured ICs may exhibit

uncertain probabilistic behavior, which imposes serious challenges to the design of

reliable systems.

Recent research efforts have been made to accept the inevitable imperfection of

devices based on the notions of approximate design and probabilistic design. In both

notions, a system’s behavior may deviate from its expected specification; however,

this deviation is deterministic in the former case but probabilistic in the latter

case. Despite the advancements made by prior endeavors, the analysis and synthesis

of probabilistic design have gained relatively less attention. Hence, there is a

research need of a framework to evaluate probabilistic design, and SSAT

stands up as a suitable logical formalism to address the need. (In the following,

the term “design” is used as a general term to refer to a single design instance,

a set of design instances, or design process; the term “synthesis” is referred to as

the design automation process transforming a system under design from high-level

system specification to low-level circuit implementation.)

SSAT is closely related to two generalizations of Boolean satisfiability: model

counting of propositional formulas and quantified Boolean formulas (QBFs). Given

a propositional formula, model counting asks to compute the number of its satis-

fying assignments. In the weighted version, weights are assigned to the Boolean

3

doi: 10.6342/NTU202101397

1.1. Motivation and the research needs

variables in the formula, and the goal is to compute the summation of weights of

the satisfying assignments. Algorithms for model counting are under active devel-

opment in recent years. In addition to exact model counting [101, 102], approximate

model counting [16, 40, 41] has been investigated to improve scalability by relaxing

exactness. On the other hand, from the perspective of the computational complex-

ity, solving an SSAT formula lies in the PSPACE-complete [108] complexity class,

the same as solving a QBF. Many endeavors have been invested in the algorithmic

improvement [13] and solver evaluation [88] for QBF.

Nevertheless, in spite of its broad applications and profound theoretical values,

SSAT has drawn relatively little attention compared to SAT, model counting, or

QBF. Most prior efforts for SSAT solving are based on the conventional Davis-

Putnam-Logemann-Loveland (DPLL) search [28], which suffers from the scalability

issue when problem sizes grow. Therefore, there is a research need to develop

novel algorithms to enhance the scalability of SSAT solving, and the recent

advancements of SAT/QBF solving and model counting can be leveraged to help

the algorithm design.

In spite of its rich expressiveness to encode problems ranging from AI to VLSI,

SSAT is limited by its descriptive power within the PSPACE complexity class. More

complex problems with nondeterminism might not be succinctly modeled as SSAT

formulas. As a result, there is a research need of a logical formalism for

problems beyond PSPACE and with uncertainty.

4

doi: 10.6342/NTU202101397

1.2. Our contributions

NP

SAT
PP

MAJSAT
PSPACE

QBFSSAT

NEXPTIME

DQBFDSSAT

Figure 1.1: The contributions of this dissertation in a nutshell

Finally, most research work regarding SSAT solving was done before the year

2010 [70, 72–75, 109]. Open-source implementations and SSAT instances for testing

are barely available, which hinder the understanding of the algorithmic details and

empirical solver comparison. Consequently, there is a need to provide open-

source implementations and databases of SSAT instances to facilitate

convenient evaluation of different algorithms and drive further advance-

ments.

1.2 Our contributions

This dissertation aims at contributing to the aforementioned research needs. Our

achievements positioned in the hierarchy of various complexity classes beyond NP

are visualized in Fig. 1.1. In a nutshell, we investigate the application of SSAT to

5

doi: 10.6342/NTU202101397

1.2. Our contributions

VLSI analysis, leverage the advancements of SAT, MAJSAT, and QBF to design

new decision procedures for SSAT, and combine SSAT and DQBF to propose a

new formulation, called DSSAT, for NEXPTIME problems with uncertainty. In the

following, we will explain each contribution in more detail.

First, we approach the analysis of probabilistic design by formalizing the problem

of probabilistic property evaluation. Different computational solutions are provided

for the problem. Particularly, random-exist and exist-random quantified SSAT for-

mulas are exploited to solve the average-case and worst-case analyses, respectively.

To the best of our knowledge, this is the first attempt that analyzes VLSI systems

with SSAT. (In the following, the terms “analysis” and “evaluation” are used inter-

changeably as general terms referring to the process of determining qualitative or

quantitative properties of a design. We will formulate the problem of probabilistic

property evaluation, and refer to the term “evaluation” as computing the satisfying

probability of certain properties of a probabilistic design.)

Second, in contrast to the previous DPLL-based algorithms, we utilize modern

techniques of SAT/QBF solving and model counting to improve SSAT solving. Mo-

tivated by the new VLSI applications, we focus on random-exist and exist-random

quantified fragments of SSAT formulas.

The random-exist quantified SSAT formula is of the form Φ =

R

X, ∃Y.φ, which

is the counterpart of the forall-exist QBF. It has applications in Bayesian-network

inference [3, 24]. We propose an algorithm that uses modern SAT solvers [33, 34]

6

doi: 10.6342/NTU202101397

1.2. Our contributions

as plug-in engines. In addition to SAT solving, we also incorporate weighted model

counting, which has been widely used in probabilistic inference [18, 103], to tackle

randomized quantifiers. The randomized quantification in an SSAT formula can

be approached with weighted model counting by assigning the weight of a variable

quantified by

Rp to be p. The proposed algorithm uses an SAT solver and a model

counter in a stand-alone manner, leaving the internal structures of these solvers

intact. Due to the stand-alone usage of these solvers, the proposed algorithm may

directly benefit from the advancement of the solvers without any modification.

The exist-random quantified SSAT formulas has the form Φ = ∃X, R

Y.φ, which

is also known as E-MAJSAT [68]. Computational problems, such as computing

a maximum-a-posteriori (MAP) hypothesis or a maximum-expected-utility (MEU)

solution [30] in Bayesian networks, and searching an optimal plan for probabilistic

conformant planning domains [68], can be formulated with E-MAJSAT. Inspired

by the clause-selection [46, 96] technique, which is recently devised for QBF solving

and becomes the state-of-the-art, we propose a learning method based on the clause-

containment principle to solve E-MAJSAT. To the best of our knowledge, this is

the first attempt to adopt QBF approaches for SSAT solving.

Moreover, the proposed algorithms solve an SSAT formula in a gradual manner

that converges from approximate bounds of the satisfying probability to the exact

answer. Therefore, they are able to provide useful information even if the exact

answer is unavailable (e.g., due to limited computational resources).

7

doi: 10.6342/NTU202101397

1.3. An overview of the dissertation

Third, to provide a logical formalism for more complex problems with uncer-

tainty, we extend dependency QBF (DQBF) [5, 104] to the stochastic domain in

view of the close relation between QBF and SSAT. DQBF is a representative prob-

lem in the NEXPTIME-complete [94] complexity class. It equips QBF with Henkin

quantifiers to describe multi-player games with partial information. We formalize

the problem of dependency SSAT (DSSAT) as a generalization for SSAT. We prove

that DSSAT has the same NEXPTIME-complete complexity as DQBF, and there-

fore it can succinctly encode decision problems with uncertainty in the NEXPTIME

complexity class. We demonstrate the potential applications of DSSAT to the syn-

thesis of probabilistic and approximate design and the encoding of decentralized

POMDP (Dec-POMDP) [90] problems. Our theoretical results would encourage the

solver development.

Fourth, our implementation of the proposed SSAT algorithms and formula in-

stances used in the experiments are open-source, which will help other researchers

to understand the details of the approaches and facilitate convenient empirical eval-

uation of different algorithms.

1.3 An overview of the dissertation

The structure of this dissertation is outlined as follows.

• In Chapter 2, a brief survey of the literature is provided to highlight the

8

doi: 10.6342/NTU202101397

1.3. An overview of the dissertation

advancements made in this dissertation.

• In Chapter 3, background knowledge required throughout the dissertation is

discussed. Specific material for an individual chapter will be introduced when

it is needed.

• In Chapter 4, a formal framework to evaluate properties of probabilistic de-

sign is proposed. Especially, random-exist and exist-random quantified SSAT

formulas are exploited to solve the formulation. This chapter is based on our

conference paper [59] published at ICCAD ’14 and journal paper [60] published

in IEEE Transactions on Computers.

• In Chapter 5, modern SAT-solving and model-counting techniques are com-

bined to solve random-exist quantified SSAT formulas. This chapter is based

on our conference paper [62] published at IJCAI ’17.

• In Chapter 6, a clause-learning technique inspired by clause selection, a pre-

vailing method recently invented for QBF, is devised to solve exist-random

quantified SSAT formulas. This chapter is based on our conference paper [63]

published at IJCAI ’18.

• In Chapter 7, SSAT is lifted from the PSPACE-complete complexity class to

the NEXPTIME-completeness. We show the applicability of the lifted formal-

ism to the analysis of probabilistic design and decentralized POMDP. This

chapter is based on our conference paper [61] published at AAAI ’21.

9

doi: 10.6342/NTU202101397

1.4. Data availability statement

• In Chapter 8, we give concluding remarks and point out some potential direc-

tions for future investigation.

1.4 Data availability statement

To improve the reproducibility of the results presented in this dissertation, we pro-

vide a reproduction package on Zenodo [58], including the source code of the pro-

posed solvers, the pre-compiled binaries of the evaluated tools, the used benchmark

sets, the scripts to perform experiments, and the raw data generated from our ex-

periments. Current versions of the proposed SSAT solvers are available at https:

//github.com/NTU-ALComLab/ssatABC. The collection of SSAT instances is hosted

at https://github.com/NTU-ALComLab/ssat-benchmarks. The LATEX code for

this dissertation as well as the slides used in the oral defense is also made pub-

lic at https://github.com/nianzelee/PhD-Dissertation.

10

https://github.com/NTU-ALComLab/ssatABC
https://github.com/NTU-ALComLab/ssatABC
https://github.com/NTU-ALComLab/ssat-benchmarks
https://github.com/nianzelee/PhD-Dissertation

doi: 10.6342/NTU202101397

Chapter 2

Related Work

This chapter provides an overview of the literature related to this dissertation.

2.1 Probabilistic/Approximate design

While the shrinkage of device’s feature size according to Moore’s law [85] has driven

the prosperity of microelectronic industry, the variability and uncertainty of devices

at the atomic level pose serious challenges on the continuation of the law.

New computational paradigms are proposed in response to the challenges in

the post-Moore’s era. Among many other efforts, approximate design allows de-

terministic deviation of an implemented circuit from its specification. A real-world

example of approximate design is the deployment of neural networks to edge de-

11

doi: 10.6342/NTU202101397

2.1. Probabilistic/Approximate design

vices. Quantization is often applied to convert floating-point parameters to fixed-

point ones to reduce hardware cost. Along this direction, circuit architectures for

reconfigurable adders whose accuracy can be adjusted based on application scenar-

ios [50, 115] and energy-efficient adders with a moderate error rate [51] are proposed.

The automatic synthesis and analysis of approximate circuits have also been stud-

ied [65, 78, 79, 86, 97, 112, 113]. On the other hand, probabilistic design allows

nondeterministic deviation from the specification. It can be applied to, for example,

low-power video decoding, where correctness can be sacrificed for power efficiency.

Chakrapani et al. [17] consider CMOS devices with probabilistic behavior, establish

the relation between energy consumption and probability of correct switching, and

exploit it to trade power efficiency against correctness.

Despite the advancements made by prior endeavors, most of them focus on ap-

proximate design. The analysis and synthesis of probabilistic design have gained

relatively less attention. Nevertheless, the study of probabilistic design is important

in the following respects. First, randomness is a valuable resource to trade for com-

putation efficiency. For example, there exist problems that can be solved efficiently

by randomized algorithms but not deterministic algorithms. Second, there are ap-

plications, such as data mining, compressive sensing, etc., that may not be sensitive

to minor random fluctuations. Third, devices at their quantum foundation or sys-

tems in their biological nature are intrinsically probabilistic. We aim at providing

a formalism for the analysis and verification of probabilistic design. Notice that in

the design automation process, verification is essential to the entire design flow. For

12

doi: 10.6342/NTU202101397

2.1. Probabilistic/Approximate design

example, equivalence checking [54, 80] should be applied to validate the correctness

of synthesized circuits. Hence, establishing a verification framework is a crucial step

in automated synthesis of probabilistic design.

Probabilistic behavior of a design has also been studied along the research of

circuit reliability analysis, which focuses on analyzing the robustness of a circuit

against permanent defects or transient faults. The reliability of a circuit is char-

acterized by the probability of the occurrence of an error at the primary outputs.

Therefore, the study of circuit reliability is very related to the evaluation of proba-

bilistic design. Classical approaches to reliability analysis apply fault injection and

Monte Carlo simulation [84]. Symbolic analysis methods exploiting mathematical

tools, such as Markov random fields [4], probability transfer matrices [53], Bayesian

networks [98], and algebraic decision diagrams [82], have also been investigated.

Choudhury and Mohanram [20] propose three accurate and scalable algorithms to

address the scalability issue of symbolic methods.

However, prior methods for circuit reliability analysis are inadequate to prob-

abilistic circuits for the following two reasons. First, most prior approaches as-

sume single-gate failures. This assumption makes prior methods inapplicable to

probabilistic design, where multiple probabilistic gates may be commonly present.

Second, most prior efforts consider only the average error rate of a design. The

necessity of analyzing the maximum error rate comes from the increasing demand of

safety-centric systems, e.g., utilized in health care or automotive industries [66, 67].

13

doi: 10.6342/NTU202101397

2.2. Stochastic Boolean satisfiability

Unfortunately, its computational scalability is much limited due to the underlying

symbolic modeling via Bayesian network [47].

2.2 Stochastic Boolean satisfiability

SSAT [69, 72] is first formulated by Papadimitriou and interpreted as games against

nature [92]. It lies in the same PSPACE-complete [108] complexity class as QBF.

Exploiting randomized quantifiers, SSAT is capable of modeling a variety of

computational problems inherent with uncertainty [44], such as probabilistic plan-

ning [55, 68], Bayesian-network inference [3, 24, 30, 47], and trust management [72].

Recently, the quantitative information-flow analysis for software security is also for-

mulated as E-MAJSAT [37], and bi-directional polynomial-time reductions between

SSAT and POMDP are established [100].

A number of SSAT solvers have been developed. Among the prior efforts made

to approach SSAT, most of them are based on Davis-Putnam-Logemann-Loveland

(DPLL) search [28]. For example, solver MAXPLAN [74] encodes a conformant plan-

ning problem as an E-MAJSAT formula and improves the solving efficiency by pure

variables, unit propagation, and subproblem memorization; solver ZANDER [75] deals

with partially observable probabilistic planning by formulating the problem as a

general SSAT formula and incorporates several threshold-pruning heuristics to re-

duce the search space. Solver DC-SSAT [73] divides an SSAT formula into several

14

doi: 10.6342/NTU202101397

2.3. Model counting

smaller SSAT formulas and conquers them with a DPLL-based algorithm. The solu-

tions to the separate SSAT problems are then combined into an optimal solution to

the entire formula. The formula splitting is tailored to exploit the structural char-

acteristics of probabilistic planning problems, which often contain similar clauses

to encode the state-transition mechanism across different stages. The divide-and-

conquer approach of DC-SSAT achieves several orders of magnitude speedup than its

predecessor ZANDER. Approximate solving [71] and resolution rules [109] for SSAT

have also been addressed. Techniques from knowledge compilation have also been

exploited to solve E-MAJSAT formulas. Solver ComPlan [45] compiles the matrix of

an E-MAJSAT formula into its deterministic, decomposable negation normal form

(d-DNNF) [25, 26], and performs a branch-and-bound search. It is further improved

by an enhanced bound computation method [95].

2.3 Model counting

Model-counting [42] algorithms can be classified into two categories: exact counting

and approximate counting. The former adopts DPLL-based search with additional

techniques, such as component analysis and caching, to improve the counting ef-

ficiency [101, 102]. Knowledge compilation has also been applied to exact model

counting. For example, c2d [25, 26] compiles a CNF formula into its d-DNNF and

performs counting on this data structure. The latter takes a different strategy, aim-

ing at providing lower and/or upper bounds with guarantee on confidence level.

15

doi: 10.6342/NTU202101397

2.3. Model counting

Table 2.1: Model-counting variants and their corresponding SSAT formulas

Model-Counting Variant SSAT Encoding

Unweighted

R0.5x1, . . . ,

R0.5xn.φ(x1, . . . , xn)

Weighted

Rp1x1, . . . ,

Rpnxn.φ(x1, . . . , xn)

Projected

R0.5x1, . . . ,

R0.5xn,∃y1, . . . ,∃ym.φ(x1, . . . , xn, y1, . . . , ym)

Maximum ∃x1, . . . ,∃xn,

R0.5y1, . . . ,

R0.5ym.φ(x1, . . . , xn, y1, . . . , ym)

Weighted projected

Rp1x1, . . . ,

Rpnxn,∃y1, . . . ,∃ym.φ(x1, . . . , xn, y1, . . . , ym)

Maximum weighted ∃x1, . . . ,∃xn,

Rp1y1, . . . ,

Rpmym.φ(x1, . . . , xn, y1, . . . , ym)

Ideas from statistics [15, 16] have been adopted to increase the capacity limit of

model counting.

There are many variants of model counting. For example, weighted model count-

ing asks to aggregate the weight of every satisfying assignment. It has been widely

adopted in probabilistic inference [18, 103]. Projected model counting [2] computes

the numbers of satisfying assignments projected on a subset of original variables.

Maximum model counting [37] finds an assignment to a subset of variables in a

formula such that the number of satisfying assignments of the residual formula co-

factored with the assignment is maximized.

The above variants of model counting can be expressed via SSAT, because

the randomized quantifiers of SSAT essentially aggregate the results from different

branches with weights. Table 2.1 shows the variants of model-counting problems

16

doi: 10.6342/NTU202101397

2.3. Model counting

and their respective SSAT encodings. Note that weighted projected model counting

and maximum weighted model counting are equivalent to random-exist quantified

SSAT and exist-random quantified SSAT, respectively.

Model counting is under active research. Recent advancements include DPMC [31],

a dynamic-programming framework for exact weighted model counting based on

project-join trees. DPMC applies tree decomposition to the constraint graph of a CNF

formula to obtain a project-join tree and aggregates the weight of the formula with

arithmetic decision diagrams using dynamic programming. DPMC is further extended

to a weighted projected model counter ProCount [32] by requiring the projected

variables to be placed on top of the non-projected variables in a project-join tree.

Other latest developments of model counting can be found in the report [36] of the

2020 Model Counting Competition.

17

doi: 10.6342/NTU202101397

doi: 10.6342/NTU202101397

Chapter 3

Background

In this chapter, we provide background knowledge that is commonly used across this

dissertation. Preliminaries specific to each chapter will be introduced later when

they are needed. Symbols used in this dissertation are summarized in Table 3.1.

3.1 Propositional logic

We denote Boolean constants false and true by symbols ⊥ and >, respectively.

In arithmetic expressions, ⊥ is interpreted as integer 0 and > as integer 1. A

variable x that takes values from the Boolean domain B = {⊥,>} is called a Boolean

variable. A literal is a variable itself (a positive literal) or the negation of a variable

(a negative literal). For a literal l, let var(l) denote the variable of l. Boolean

19

doi: 10.6342/NTU202101397

3.1. Propositional logic

connectives ¬,∨,∧,→,≡ are used under their conventional semantics. Over a finite

set V of Boolean variables, we define a well-formed formula φ with the following

Backus-Naur-form (BNF) grammar:

φ ::= x ∈ V |¬φ|(φ ∨ φ)|(φ ∧ φ)|(φ→ φ)|(φ ≡ φ). (3.1)

Given a well-formed formula φ, let vars(φ) denote the set of Boolean variables

appearing in φ. In the following, a variable is Boolean if not otherwise specified. We

shall consider well-formed formulas only and refer to them as Boolean formulas.

3.1.1 Conjunctive and disjunctive normal forms

Among various representations of a Boolean formula, we are particularly interested

in normal-form representations because their simplicity allows efficient analyses.

A Boolean formula is in conjunctive normal form (CNF) if it is a conjunction of

clauses, where a clause is a disjunction of literals. A Boolean formula is in disjunctive

normal form (DNF) if it is a disjunction of cubes, where a cube is a conjunction of

literals. A variable x is said to be pure in a formula if its appearances in the formula

are all positive literals or negative literals. We alternatively treat a clause or a cube

as a set of literals, and a CNF (resp. DNF) formula as a set of clauses (resp. cubes).

In the rest of the dissertation, a Boolean formula is assumed to be given in CNF if

not otherwise specified.

20

doi: 10.6342/NTU202101397

3.1. Propositional logic

3.1.2 Boolean satisfiability

An assignment τ over a variable set V is a mapping from V to B. We denote the

set of all assignments over V by A(V). Given a Boolean formula φ, an assignment

τ over vars(φ) is called a complete assignment for φ. If τ is over a proper subset

of vars(φ), it is called a partial assignment. The resultant formula of φ induced by

an assignment τ over a variable set V , denoted as φ|τ , is obtained via substituting

the occurrences of every x ∈ V in φ with its assigned value τ(x). Such substitution

is called cofactoring φ with τ . If V = {x}, we write φ|x (resp. φ|¬x) to denote the

resultant formula of φ under an assignment that maps x to > (resp. ⊥), and call

this formula the positive (resp. negative) cofactor of φ with respect to variable x.

A complete assignment τ satisfies φ, denoted as τ |= φ, if φ|τ = >. Such

complete assignment τ is called a satisfying complete assignment for φ. On the

other hand, if φ|τ = ⊥, τ is called an unsatisfying complete assignment. Similarly, a

partial assignment τ+ over X ⊂ vars(φ) is called a satisfying (resp. an unsatisfying)

partial assignment for φ if for some (resp. every) assignment µ over vars(φ) \X, φ

valuates to > (resp. ⊥) under the complete assignment that combines τ and µ. We

alternatively represent an assignment τ for φ as a cube. A cube is called a minterm

of formula φ when it corresponds to a complete assignment over vars(φ). Given

two Boolean formulas φ1 and φ2 over a same set V of variables, we write φ1 → φ2 if

the following condition holds: ∀τ ∈ A(V).τ |= φ1 → τ |= φ2.

21

doi: 10.6342/NTU202101397

3.1. Propositional logic

A Boolean formula φ is satisfiable if it has a satisfying complete assignment.

Otherwise, φ is unsatisfiable. A Boolean formula φ is a tautology if the following

condition holds: ∀τ ∈ A(vars(φ)).τ |= φ. The Boolean satisfiability problem asks

to decide whether a Boolean formula is satisfiable or not. It is a well-known NP-

complete [23] problem. We write SAT(φ) (resp. UNSAT(φ)) to indicate φ is satisfiable

(resp. unsatisfiable). A satisfying complete assignment of φ is also called a model

of φ, which is denoted by φ.model.

A set Xd ⊆ vars(φ) is a base set for φ if for any (partial) assignment τ+ over

Xd, there exists at most one assignment µ over vars(φ) \Xd such that φ is satisfied

by the combined assignment of τ+ and µ over vars(φ). Observe that, given any

Boolean formula φ, a base set must exist (vars(φ) is a trivial base set of φ) but

may not be unique. Let τ+ be an assignment over a base set Xd ⊆ vars(φ). If

there exists an assignment µ over vars(φ) \Xd such that the combined assignment

ν satisfies φ, then we say that φ is satisfiable under τ+ and write τ+ |= φ to mean

ν |= φ. If there does not exist such an assignment µ over vars(φ) \ Xd, then φ is

unsatisfiable under τ+, denoted by τ+ 6|= φ.

An n-variable Boolean function is a mapping from Bn to B. Note that a Boolean

formula φ induces a Boolean function with a domain A(vars(φ)). We shall not

distinguish between a Boolean formula and its induced Boolean function.

22

doi: 10.6342/NTU202101397

3.2. Stochastic Boolean satisfiability

3.2 Stochastic Boolean satisfiability

An SSAT formula Φ over variables {x1, . . . , xn} has the form: Q1x1, . . . , Qnxn.φ,

where each Qi ∈ {∃,

Rp} and φ is quantifier-free. Symbol ∃ denotes an existential

quantifier with its conventional semantics. Symbol

Rp denotes a randomized quan-

tifier [92], which requires the quantified variable to evaluate to > with probability

p ∈ [0, 1]. Given an SSAT formula Φ, the quantification structure Q1x1, . . . , Qnxn

is called the prefix, and the quantifier-free Boolean formula φ is called the matrix.

Let x be the outermost variable in the prefix of an SSAT formula Φ. The satis-

fying probability of Φ, denoted by Pr[Φ], is defined by the following four rules:

a) Pr[>] = 1,

b) Pr[⊥] = 0,

c) Pr[Φ] = max{Pr[Φ|¬x],Pr[Φ|x]}, if x is existentially quantified,

d) Pr[Φ] = (1− p) Pr[Φ|¬x] + pPr[Φ|x], if x is randomly quantified by

Rp,

where Φ|¬x and Φ|x denote the SSAT formulas obtained by eliminating the outer-

most quantifier of x via substituting the value of x in the matrix with ⊥ and >,

respectively.

The decision version of SSAT is stated as follows. Given an SSAT formula Φ

and a threshold θ ∈ [0, 1], decide whether Pr[Φ] ≥ θ. On the other hand, the

23

doi: 10.6342/NTU202101397

3.2. Stochastic Boolean satisfiability

optimization version asks to compute the exact value of Pr[Φ]. The decision version

of SSAT is PSPACE-complete [92].

An SSAT formula can also be interpreted from a game-theoretical viewpoint.

The randomized quantifiers represent the nondeterministic factors in a stochastic

game. The existential quantifiers model the moves of an agent who plays under

such uncertainty. The satisfying probability of the SSAT formula corresponds to the

maximum winning probability of the agent. A Skolem function for an existentially

quantified variable is the agent’s strategy to assign this variable. Note that the

Skolem function for a variable can only depend on its preceding variables in the

prefix. A set of optimal Skolem functions achieves the maximum winning probability.

Example 3.1. Consider an SSAT formula Φ:

R0.5x1,∃y1,

R0.5x2,∃y2.(x1 ∨ ¬y1)(¬x1 ∨ y1)(¬x1 ∨ ¬x2 ∨ y2)(x1 ∨ ¬y2)(x2 ∨ ¬y2).

According to the computational rules for the satisfying probability of SSAT, we have

Pr[Φ] = 1. The maximum winning probability can be achieved by assigning y1 to

f1(x1) = x1 and y2 to f2(x1, x2) = x1 ∧ x2. The set of functions {f1, f2} is a set of

optimal Skolem functions for Φ.

24

doi: 10.6342/NTU202101397

3.3. Model counting

3.3 Model counting

3.3.1 Exact/Approximate model counting

The model counting [42] problem asks to find the number of the satisfying assign-

ments of a Boolean formula φ. The exact algorithms compute the precise count

#φ of the satisfying assignments. The approximate algorithms compute bounds of

the precise count #φ with a confidence level. One common formulation is the (ε, δ)

approximate model counting, which asks to find an answer that is sufficiently close

to the precise count with high enough probability. This formulation can be char-

acterized by the inequality Pr[(1 + ε)−1#φ ≤ A ≤ (1 + ε)#φ] ≥ 1 − δ, where the

parameters ε and δ can be configured to trade precision against scalability.

3.3.2 Weighted model counting

The weighted version asks to compute the weight of a formula φ given a weighting

function ω : vars(φ) 7→ [0, 1]. The weight of a positive literal x (resp. a negative

literal ¬x) is defined to be ω(x) (resp. 1 − ω(x)). The weight of an assignment τ ,

denoted as ω(τ), equals the product of the weights of its individual literals. The

weight of the formula φ, denoted as ω(φ), is the summation of the weights of its

satisfying assignments.

25

doi: 10.6342/NTU202101397

3.3. Model counting

Table 3.1: Summary of the symbols used in the dissertation

Symbol Description

B The Boolean domain {⊥,>}

x A Boolean variable

l A literal (a variable or its negation)

var(l) The variable of l

τ An assignment (a mapping from a variable set to B)

τ(x) The assigned value of x

A(V) The set of all assignments over variable set V

φ A quantifier-free formula

vars(φ) The set of variables appearing in φ

τ |= φ τ satisfies φ

φ1 → φ2 Every satisfying assignment of φ1 also satisfies φ2

SAT(φ), UNSAT(φ) φ is (un)satisfiable

φ.model A satisfying assignment of φ

φ|x, φ|¬x Positive and negative cofactors of φ w.r.t. x

φ|τ The resultant formula after cofactoring φ with τ

C A clause (a disjunction of literals)

Φ A quantified formula

26

doi: 10.6342/NTU202101397

Chapter 4

Probabilistic Design Evaluation

In this chapter, we propose a general formulation for the evaluation and verifi-

cation of probabilistic design. We establish the connection between the proposed

formulation and SSAT, weighted model counting, and probabilistic model checking.

Moreover, a new SSAT algorithm based on binary decision diagram (BDD) is pro-

posed. Most content in this chapter is based on our conference paper [59] published

at ICCAD ’14 and journal paper [60] published in IEEE Transactions on Computers.

27

doi: 10.6342/NTU202101397

4.1. Preliminaries

4.1 Preliminaries

4.1.1 Boolean network

A (combinational) Boolean network is a directed acyclic graph G = (V,E), with a

set V of vertices and a set E ⊆ V × V of edges. Two non-empty disjoint subsets VI

and VO of V are identified: a vertex v ∈ VI (resp. VO) is referred to as a primary

input (PI) (resp. primary output (PO)). Each vertex v ∈ V is associated with a

Boolean variable bv. Each vertex v ∈ V \VI is associated with a Boolean function fv.

An edge (u, v) ∈ E indicates fv refers to bu as an input variable; u is called a fanin

of v, and v a fanout of u. The valuation of the Boolean variable bv of vertex v is as

follows: if v is a PI, bv is given by external signals; otherwise, bv equals the value

of fv. To ease readability, we will not distinguish a vertex v and its corresponding

Boolean variable bv. We will simply denote bv with v.

Note that a Boolean network can be converted in linear time to a CNF formula

through Tseitin transformation [111]. Consider a Boolean network G, and let X

denote the set of PI variables of G. During Tseitin transformation, new variables

will be introduced for every vertex v ∈ V \ VI . Let Y denote the set of these fresh

variables. The resultant formula φG(X, Y) obtained from Tseitin transformation

encodes the behavior of the Boolean network G. Observe that X is a base set for

φG. This is because once the PI variables are decided by an assignment τ+ over X,

the values for the other variables will be propagated according to the behavior of

28

doi: 10.6342/NTU202101397

4.1. Preliminaries

the Boolean network. Therefore, at most one assignment µ over Y (the one with

the consistent variable evaluation to the Boolean network) is able to satisfy φG.

4.1.2 Probability and random variables

To characterize the behavior of a probabilistic design, we take advantage of Bernoulli

random variables. In the following, we provide basic definitions of random variables.

Consider an experiment with a sample space S and a probability measure Pr[·].

A random variable X is a mapping from an outcome in S to a real number. The

probability mass function (PMF) PX of X is defined by PX(x) = Pr[{s | X(s) = x}].

A random variable X is called a Bernoulli(p) random variable with parameter

p ∈ [0, 1], denoted by X ∼ Bernoulli(p), if the PMF of X has the form:

PX(x) =


p, if x = 1,

1− p, else if x = 0,

0, otherwise.

Note that a Bernoulli random variable maps every outcome in a sample space to

either 0 or 1. Therefore, it is suitable to characterize experiments with binary

outcomes.

For a wire (an edge) of a circuit (Boolean network), its value is either true

or false. A Bernoulli random variable in this context maps true and false to

real numbers 1 and 0, respectively. The corresponding parameter p of the random

29

doi: 10.6342/NTU202101397

4.2. Modeling probabilistic design

variable is the probability for the wire to valuate to true. On the other hand, for a

gate (a vertex) of a circuit, its operation has two outcomes: correct and erroneous.

A Bernoulli random variable in this context maps erroneous and correct operations

to real numbers 1 and 0, respectively. The corresponding parameter p of the random

variable is the probability of erroneous operation, i.e., the error rate, of the gate.

4.2 Modeling probabilistic design

To verify a deterministic design, properties are often asserted at the primary outputs

of a circuit to examine whether there exists an assignment to the primary inputs that

falsifies some of the properties. If there exists such an assignment, a counterexample

to a property is found.

However, when it comes to probabilistic design, the same approach is not fully

adequate. Since a probabilistic circuit could produce different output responses for

the same input stimulus, computing the probability of property violation is more

meaningful than searching for a counterexample. Hence we pose the following ques-

tion: Given a probabilistic circuit and a property to be verified, what is the average

or maximum probability for the property to be violated? We model a probabilis-

tic design as a probabilistic Boolean network and formalize probabilistic property

evaluation (PPE) to answer the question. While the evaluation of combinational

probabilistic design is of our primary interest, the proposed framework is also ex-

30

doi: 10.6342/NTU202101397

4.2. Modeling probabilistic design

p

z

Bz ∼ Bernoulli(p)

Figure 4.1: Distillation of a nand gate with an error rate p

tensible to sequential probabilistic design.

4.2.1 Probabilistic Boolean network

We define a probabilistic Boolean network to model circuits with logic gates that

exhibit probabilistic behavior. A probabilistic Boolean network (PBN) is a Boolean

network G = (V,E) with random variables annotated to its vertices. The proba-

bilistic behavior of a PI v ∈ VI is modeled by a Bernoulli random variable Bv ∼

Bernoulli(pv) with pv = Pr[v = >]. The probabilistic behavior of the output of a

vertex v ∈ V \ VI is modeled with a Bernoulli random variable Bv ∼ Bernoulli(pv)

with pv corresponding to the error rate of v.

In general, two random variables Bu and Bv for u, v ∈ V and u 6= v can be

dependent, and their joint distribution has to be considered. In this paper, we first

focus on the simplified situation where the random variables of vertices are mutually

independent, and refer to a PBN whose random variables are mutually independent

as an independent PBN. We will show how to extend the proposed framework to a

PBN with mutually dependent random variables later.

31

doi: 10.6342/NTU202101397

4.2. Modeling probabilistic design

Given a PBNG = (V,E), without loss of generality, we standardizeG by convert-

ing it to a standardized PBN (SPBN) G′ = (V ′, E ′) with the distillation operation

depicted in Fig. 4.1, using an erroneous nand gate as an example. For each node

v ∈ V \ VI of G with an error rate pv, its probabilistic behavior is distilled into an

error source modeled by an auxiliary Boolean input z with Bz ∼ Bernoulli(pv) for

Pr[z = >] = pv. Moreover, an xor gate is used to conditionally invert the output

of the error-free node v if and only if z valuates to >. Note that an auxiliary input

differs from a primary input in that the error rate pz of an auxiliary input is fixed

with respect to the characteristics of a probabilistic node rather than determined by

the environmental input behavior. In the following, we let VZ be the set of auxiliary

inputs (AIs) of an SPBN.

4.2.2 Probabilistic property evaluation

To formally reason about probabilistic design, we formulate probabilistic property

evaluation (PPE) by capturing the degree of property violation with probability.

We distinguish between input assignment and parameter assignment in PPE. An

input assignment assigns a truth value to a Boolean variable v for every PI. On the

other hand, a parameter assignment specifies a probability pv for a PI v to be true.

Note that the probability of an error source z ∈ VZ is determined by the underlying

PBN and needs not be assigned.

To analyze a probabilistic design, we define signal probability as follows.

32

doi: 10.6342/NTU202101397

4.2. Modeling probabilistic design

Definition 4.1 (Signal Probability (parameterized)). Given an SPBN G = (V,E)

and a parameter assignment π : VI 7→ [0, 1], the signal probability or satisfying

probability of a node v ∈ V with respect to the parameter assignment π is Pr[v = >]

under π.

It is natural to ask under what parameter assignment the signal probability of

some node is maximized. It corresponds to the following definition.

Definition 4.2 (Signal Probability (maximized)). Given an SPBN G = (V,E), the

maximum signal probability or maximum satisfying probability of a node v ∈ V is

Pr[v = >] maximized over all parameter assignments.

Notice that, given a parameter assignment to the PIs of an SPBN G = (V,E),

we could associate a random variable Rv ∼ Bernoulli(p) with each node v ∈ V such

that p = Pr[v = >] under π. Those random variables can be mutually dependent

(even for an SPBN derived from an independent PBN) due to the reconvergent paths

in the Boolean network.

According to Definition 4.2, we have the following proposition on parameter

assignments that maximize signal probability.

Proposition 4.1. Given an SPBN G = (V,E) and an arbitrary v ∈ V , there exists

a parameter assignment π that maximizes the signal probability of v such that π(u)

equals either probability 0 or 1 for any u ∈ VI .

Proof. Assume there exists an optimal parameter assignment π not in such a form.

33

doi: 10.6342/NTU202101397

4.2. Modeling probabilistic design

GD GPPIs (X)

internal vertices (Y)

AIs (Z)

property vertices (W)

Pr[violation] =?

Figure 4.2: A miter SPBN for probabilistic property evaluation

That is, there exists some u ∈ VI such that 0 < π(u) < 1. Denote the signal

probabilities of v under π(u) = 0 and π(u) = 1 by p0 and p1, respectively. Note that

Pr[v = >] under π equals (1−π(u))×p0 +π(u)×p1, and min{p0, p1} ≤ Pr[v = >] ≤

max{p0, p1}. If p0 6= p1, there is a contradiction since Pr[v = >] < max{p0, p1}, and

π is not an optimal assignment. If p0 = p1, W.L.O.G., set π(u) = 0. So the optimal

assignment must be in the stated form. �

To formulate the PPE problem, we construct a miter SPBN as shown in Fig. 4.2.

Given a design SPBN GD modeling a probabilistic circuit and a property SPBN GP

specifying a property under verification, a miter SPBN GM is built by connecting

relevant primary outputs of GD to the primary inputs of GP . The property SPBN

is used to monitor the design SPBN. Let X be the set of PIs of GD, Z be the set of

AIs of GD, W be a subset of PIs of GP , and Y be the set of all other vertices. Note

that GP may have additional inputs W to enrich the expressiveness of property. For

example, they can be used to prioritize the primary outputs of GD. Based on signal

34

doi: 10.6342/NTU202101397

4.2. Modeling probabilistic design

probability, two versions of the PPE problem are defined below.

Definition 4.3 (PPE (maximized)). Given a miter SPBN GM with the vertex sets

X, Y, Z,W defined as above, the maximum probabilistic property evaluation (MPPE)

problem asks to find the maximum satisfying probability of the output of GM . That

is, the signal probability of the miter output corresponds to the maximum probability

of property violation under all parameter assignments.

Definition 4.4 (PPE (parameterized)). Given a miter SPBN GM with the vertex

sets X, Y, Z,W defined as above and a parameter assignment π : X 7→ [0, 1], the

probabilistic property evaluation (PPE) problem asks to find the satisfying probability

of the output of GM . That is, the signal probability of the miter output corresponds

to the probability of property violation under the given parameter assignment.

4.2.3 Extension to sequential probabilistic design

Although the above PPE and MPPE frameworks mainly focus on combinational

design, they are extensible to analyze sequential design by circuit unrolling [21],

similar to the soft-error reliability analysis for sequential circuits [81]. For exam-

ple, to find the probability of property violation after T clocks of execution, the

sequential circuit is unrolled into a combinational circuit by connecting T copies of

the combinational block of the sequential circuit to mimic the state transitions in T

time frames. For simplicity, the occurrences of errors among different time frames

are assumed to be temporally independent, i.e., the random variables governing the

35

doi: 10.6342/NTU202101397

4.3. Solving probabilistic property evaluation

probabilistic behavior of errors among different time frames are mutually indepen-

dent. After unrolling, the proposed PPE and MPPE frameworks can be applied

to the effective combinational circuit and analyze the satisfying probability of the

output at the T th time frame. The result corresponds to the probability of property

violation of the sequential design after T clocks of execution.

4.3 Solving probabilistic property evaluation

We propose different solutions to the MPPE and PPE problems. For the former,

we resort to SSAT solving. For the latter, in addition to SSAT solving, we present

solutions based on signal probability calculation, weighted model counting, and

probabilistic model checking.

4.3.1 Solving MPPE and PPE via SSAT

Note that the entire miter SPBN can be directly converted to a CNF formula by

Tseitin transformation [111] since all vertices except for those in X,Z,W are error-

free after the standardization. In the following, let φM be the CNF formula converted

from the miter SPBN GM , which contains vertex sets X = {x1, . . . , xn}, Y =

{y1, . . . , ym}, Z = {z1, . . . , zl}, and W = {w1, . . . , wq} as shown in Fig. 4.2. Observe

that X ∪ Z ∪W is a base set for φM . Given a parameter assignment π to X, we

define the corresponding weighting function ω : X ∪ Z ∪ W 7→ [0, 1] for φM as

36

doi: 10.6342/NTU202101397

4.3. Solving probabilistic property evaluation

ω(xi) = π(xi), ω(yj) = pyj , and ω(wk) = pwk for all xi ∈ X, yj ∈ Y , and wk ∈ W .

The weighting function ω will be used throughout our discussion.

Theorem 4.1. The probabilistic property evaluation (PPE) of φM under a param-

eter assignment π can be expressed by the following SSAT formula ΦPPE(π):

Rπ(x1)x1, . . . ,

Rπ(xn)xn,

Rpz1z1, . . . ,

Rpzlzl,

Rpw1w1, . . . ,

Rpwqwq,∃y1, . . . ,∃ym.φM .

(4.1)

Proof. Let A be the event φM = > and Λ = A(X ∪ Z ∪W). By the law of total

probability, Pr[A] =
∑
τ∈Λ

Pr[τ] Pr[A | τ], where Pr[τ] = ω(τ) (ω is the weighting

function defined previously) and Pr[A | τ] is the conditional probability of event A

under the assignment τ . Notice that Pr[A | τ] = φM |τ since X ∪Z ∪W is a base set

for φM . As a result, Pr[A] =
∑
τ∈Λ

ω(τ)φM |τ , which equals the satisfying probability

of the SSAT formula ΦPPE(π). �

Theorem 4.2. The maximum probabilistic property evaluation (MPPE) of φM can

be expressed by the following SSAT formula ΦMPPE:

∃x1, . . . ,∃xn,

Rpz1z1, . . . ,

Rpzlzl,

Rpw1w1, . . . ,

Rpwqwq,∃y1, . . . ,∃ym.φM . (4.2)

Proof. By the same argument in the proof of Theorem 4.1, given an assignment τX

over X, the SSAT formula:

ΦMPPE(τX) =

Rpz1z1, . . . ,

Rpzlzl,

Rpw1w1, . . . ,

Rpwqwq,∃y1, . . . ,∃ym.φM |τX

computes the satisfying probability of the miter under the assignment τX . According

to the SSAT semantics, the outermost existential quantification of primary inputs

37

doi: 10.6342/NTU202101397

4.3. Solving probabilistic property evaluation

Algorithm 1 BDD-based SSAT solving: BddSsatSolve

Input: Φ = Q1v1, . . . , Qnvn.φ

Output: Pr[Φ]

1: N := BuildReducedOrderedBdd(φ, (v1, . . . , vn))

2: Q := Q1v1, . . . , Qnvn

3: return BddSsatRecur(N,Q)

X ensures to find an optimal assignment τ ∗X such that the satisfying probability of

ΦMPPE(τ ∗X) is maximized. Hence the SSAT formula ΦMPPE computes the maximum

satisfying probability of the miter. �

Note that the only difference between ΦMPPE and ΦPPE lies in the quantifica-

tion for the primary inputs X. Although SSAT provides a convenient language for

expressing both MPPE and PPE problems, its solvers to date remain immature to

handle formulas of practical sizes in our considered application. One of the main

inefficiencies can be attributed to representing φM in CNF, which results in the

additional quantification of the intermediate circuit variables Y = {y1, . . . , ym}. It

motivates the development of a new SSAT solver as we present below.

BDD-based SSAT solving

We propose a BDD-based solver to enhance the scalability of SSAT solving.

The procedure BddSsatSolve is outlined in Alg. 1, which takes as input an SSAT

formula Φ = Q1v1, . . . , Qnvn.φ. At line 1, a reduced ordered BDD (ROBDD) of

38

doi: 10.6342/NTU202101397

4.3. Solving probabilistic property evaluation

Algorithm 2 The recursive step of BddSsatSolve: BddSsatRecur

Input: An ROBDD node N and a prefix Q

Output: Pr[N = >] under Q

1: if (N is a terminal node) then

2: return N.sp

3: end if

4: if (N.visited = false) then

5: if (Q(N.var) =

Rp) then

6: N.sp := (1− p) · BddSsatRecur(N.else, Q) + p · BddSsatRecur(N.then, Q)

7: else

8: N.sp := max{BddSsatRecur(N.else, Q), BddSsatRecur(N.then, Q)}

9: end if

10: N.visited := true

11: end if

12: return N.sp

φ is built with a variable ordering following the quantification order. At line 3,

a recursive procedure BddSsatRecur, sketched in Alg. 2, is called to calculate the

satisfying probability of Φ. In the pseudo code, for an ROBDD node N , N.then

and N.else denote its then- and else-child, respectively; N.value equals 0 (resp. 1)

if N is a 0-terminal (resp. 1-terminal) node; N.visited is a flag initialized to false

and records whether N has been processed; N.var and N.sp denote the control

variable and the satisfying probability of node N , respectively. In Alg. 2, lines 1

39

doi: 10.6342/NTU202101397

4.3. Solving probabilistic property evaluation

to 2 implement the first and second computation rules of SSAT in Section 3.2; Line 6

and line 8 implement the third and fourth rules corresponding to the randomized

and existential quantification of the variable, respectively.

Note that BddSsatSolve runs in time linear to the number of BDD nodes (as

each node is processed only once). Therefore the computation complexity is domi-

nated by constructing the ROBDD of φ. Note also that if the outermost variables

in the quantification order are existentially quantified, e.g., those in ΦMPPE of The-

orem 4.2, the corresponding assignments to the existentially quantified variables to

maximize the satisfying probability of φ can be obtained. Specifically, the assign-

ment to an outermost existential variable N.var can be derived by recording which

of BddSsatRecur(N.else, Q) and BddSsatRecur(N.then, Q) contributes to the max-

imum probability in line 8 of Alg. 2.

Signal probability with BDD-based SSAT

We exploit the developed BDD-based SSAT solver to compute signal probabilities

as defined in Definitions 4.1 and 4.2. Given an SPBN G = (V,E), the satisfying

probability of any v ∈ V can be obtained by first encoding the problem into an

SSAT instance and then solving the SSAT formula by BddSsatSolve.

Notice that formula φ needs not be represented in CNF for BddSsatSolve. In the

application of circuit verification, formula φ can be directly input to BddSsatSolve

40

doi: 10.6342/NTU202101397

4.3. Solving probabilistic property evaluation

as a circuit. Without Tseitin transformation from circuit to CNF formula, the al-

gorithm avoids introducing extra variables. Consequently, the innermost existential

quantification ∃y1, . . . ,∃ym in Eq. (4.1) of Theorem 4.1 and Eq. (4.2) of Theorem 4.2

is removed. The utilization of circuit structures makes the calculation of signal

probability (and therefore the computation of PPE and MPPE) on an SPBN more

efficient and scalable using the proposed BDD-based SSAT solver. Empirical ev-

idence suggests our proposed SSAT solver outperforms and is much scalable than

other CNF-based SSAT solvers.

We note that the signal probability calculation via BDD is used for power estima-

tion of integrated circuits [87]. As we formulate PPE as a signal probability problem

on SPBN, any prior method for signal probability calculation can be used to solve

PPE. However, it is worth emphasizing that prior methods for signal probability

calculation, such as Monte Carlo simulation, cannot solve MPPE. The BDD-based

method has its unique value over other previous endeavors for signal probability

calculation because of its generality of solving both PPE and MPPE. On the other

hand, since we established the connections of MPPE and PPE to SSAT formula-

tions, SSAT solvers can also be applied to calculate the maximum signal probability

as well as signal probability.

BDD is a well-studied data structure but known for its memory limitation. Tech-

niques have been highly developed in the 1990s to extend its scalability. Practical

experience suggests that BDD-based computation remains competitive to other for-

41

doi: 10.6342/NTU202101397

4.3. Solving probabilistic property evaluation

mulations due to the fact that other tools, such as SSAT and model counting, are

still in their early development. In our experiments over ISCAS ’85 [12] and EPFL [1]

benchmark suites, the BDD-based approach stands as the most scalable one over

other formulations to be discussed.

Generalization to dependent random variables

The proposed BDD-based SSAT solver is advantageous over other SSAT solvers for

its ability to handle randomly quantified variables whose probability distributions

are mutually dependent. Note that according to the SSAT syntax, there is no sup-

port to describe the joint behavior among randomly quantified variables. That is,

every randomly quantified variable acts independently of each other. This assump-

tion limits the expressiveness of SSAT. In this paper, we combine our BDD-based

SSAT solver with previous methods [76, 82] to represent joint probability distri-

bution of random variables, and propose a novel SSAT solver that is capable of

expressing mutual dependence among randomly quantified variables. A joint proba-

bility distribution of random variables is represented as an algebraic decision diagram

(ADD) [76, 82]. After such an ADD representing joint probability distribution is

constructed, the original BDD (which is also an ADD) of the Boolean formula φ is

conjoined with the ADD. Finally, the value of the SSAT formula can be calculated

by traversing the merged ADD similar to the prior independent counterpart.

Following the above strategy, now we explain how to extend the proposed PPE

42

doi: 10.6342/NTU202101397

4.3. Solving probabilistic property evaluation

and MPPE framework to approach PBNs whose random variables are mutually de-

pendent. After the distillation operation, the mutually dependent random variables

on erroneous vertices are converted to correlated AIs. Given the joint probability

distribution of random variables, an ADD is built to represent the mutual depen-

dence among AIs. Similarly, if PIs are correlated, another ADD can be built to

describe their correlation. After multiplying the ADDs with the BDD of the circuit

under evaluation, the average (PPE) or the maximum (MPPE) violating probabil-

ity can be computed through traversing the product ADD. Therefore, the proposed

PPE framework is generalized to dependent PBNs, whose random variables have

mutual dependent probability distribution.

4.3.2 Solving PPE via weighted model counting

The following theorem states that an SSAT formula of the form in Theorem 4.1 is

equivalent to a weighted model counting instance.

Theorem 4.3. The SSAT formula:

Φ =

Rpx1x1, . . . ,

Rpxnxn,∃y1, . . . ,∃ym.φ,

where X = {x1, . . . , xn} is a base set for φ, is equivalent to a weighted model counting

instance of φ under a weighting function ω such that ω(xi) = pxi for every xi ∈ X.

Proof. Let A be the event that φ = >. According to Theorem 4.1, we have Pr[A] =

43

doi: 10.6342/NTU202101397

4.3. Solving probabilistic property evaluation

∑
τ∈A(X)

ω(τ)φ|τ . Since X is a base set for φ, Pr[A] can be simplified to
∑
τ |=φ

ω(τ),

which is the weight of φ. �

By the above theorem, weighted model counting is clearly applicable to PPE.

While exact model counting can be extended to the weighted version at little

extra cost, more effort is required to achieve approximate weighted model count-

ing [42]. To enhance the scalability of solving PPE via model counting, we show

how to rewrite a weighted model counting instance into an equivalent unweighted

formula. The rewriting procedure WmcRewriting is outlined in Alg. 3.

The following lemma explains the rationale behind WmcRewriting.

Lemma 4.4. Let φ be a Boolean formula with a base set Xd and a weighting func-

tion ω over Xd. Given an arbitrary variable x ∈ Xd, we construct X ′d, φ
′, and ω′ as

follows. Let X ′d = Xd \ {x} ∪ {yx, zx} with yx, zx being newly introduced fresh vari-

ables. Let φ′ = φ∧ ((inv⊕ x) ≡ (yx ∧ zx)), where inv is either > or ⊥ to determine

the sign of x. If inv = ⊥, let ω′(yx)ω
′(zx) = ω(x); else, let ω′(yx)ω

′(zx) = 1− ω(x).

For any other variable v ∈ X ′d, ω′(v) = ω(v). After this construction, X ′d is a base

set for φ′, and ω′(φ′) = ω(φ).

Proof. First, we show that X ′d is a base set for φ′. Clearly any assignment τ ′ over

X ′d can be transformed into an assignment τ over Xd by substituting τ ′(yx), τ
′(zx)

into the formula ((inv ⊕ x) ≡ yx ∧ zx) to derive the truth value of x. The fact that

Xd being a base set for φ implies X ′d being a base set for φ′.

44

doi: 10.6342/NTU202101397

4.3. Solving probabilistic property evaluation

Algorithm 3 Formula rewriting for unweighted model counting: WmcRewriting

Input: A formula φ, a base set Xd for φ, a wt. func. ω s.t. ∀x ∈ Xd.ω(x) = k
2n

Output: A formula φ′, a base set X ′d for φ′, a wt. func. ω′ s.t. ∀x ∈ X ′d.ω′(x) = 1
2

1: φ′ := φ,X ′d := Xd

2: for all (x ∈ Xd) do

3: var := x,wt := ω(x)

4: while (wt 6= 1
2
) do

5: inv := ⊥

6: if (wt > 1
2
) then

7: wt := 1− wt, inv := >

8: end if

9: φ′ := φ′ ∧ ((inv ⊕ var) ≡ (yvar ∧ zvar))

10: X ′d := X ′d \ {var} ∪ {yvar}

11: ω′(yvar) = 1
2

12: var = zvar, wt = 2 · wt

13: end while

14: X ′d := X ′d ∪ {var}, ω′(var) = 1
2

15: end for

16: return (φ′, X ′d, ω
′)

45

doi: 10.6342/NTU202101397

4.3. Solving probabilistic property evaluation

Second, we prove that ω′(φ′) = ω(φ). We only show the case for inv = ⊥,

since the other case can be established similarly. Consider any τ over Xd. There

are two cases: τ(x) = 1 and τ(x) = 0. In both cases, we derive corresponding

assignments τ ′ such that φ|τ = φ′|τ ′ and ω(τ) =
∑
ω′(τ ′). In the first case τ(x) = 1,

the corresponding τ ′ over X ′d is obtained by assigning (τ ′(yx), τ
′(zx)) to (1, 1) and

τ ′(v) = τ(v) for any other v ∈ X ′d. Obviously φ|τ = φ′|τ ′ , and ω(τ) = ω′(τ ′)

because ω(x) = ω′(yx)ω
′(zx). In the second case τ(x) = 0, there are three possible

assignments τ ′ over X ′d, namely (τ ′(yx), τ
′(zx)) = (0, 0), (0, 1), (1, 0), and τ ′(v) =

τ(v) for any other v ∈ X ′d. Denote the three assignments by τ ′1, τ
′
2, τ
′
3. Note that

φ|τ = φ′|τ ′1 = φ′|τ ′2 = φ′|τ ′2 , and ω(τ) = ω′(τ ′1) + ω′(τ ′2) + ω′(τ ′3).

The above analysis shows that any τ |= φ can be transformed into one or multiple

τ ′ such that τ ′ |= φ′ and ω(τ) =
∑
ω′(τ ′). As a result, ω′(φ′) = ω(φ). �

Theorem 4.5. Given a weighted model counting instance φ and a weighting function

ω over a base set Xd of φ such that for any x ∈ Xd, ω(x) has the form of k/2n for

some n ∈ N, k an odd integer, and k < 2n, WmcRewriting in Alg. 3 derives φ′ and

ω′ over X ′d such that X ′d is a base set for φ′, ω′(φ′) = ω(φ), and ω′(x) = 1
2

for every

x ∈ X ′d.

Proof. To show the correctness of WmcRewriting, we divide the task into two parts.

First, we show that WmcRewriting always terminates. Second, we prove that when

it terminates, the claimed properties hold.

46

doi: 10.6342/NTU202101397

4.3. Solving probabilistic property evaluation

Consider a variable x ∈ Xd with ω(x) = k
2n

. Observe that the loop invariant

of the while loop is wt = h
2m

, for some m ∈ N, h an odd integer, and h <

2m. Moreover, after an iteration, the denominator of wt will be halved, while the

numerator remains an odd integer. As a result, wt equals 1/2 after n− 1 iterations

and the while loop terminates.

Inside the while loop, the truth value of inv is decided by comparing wt with

1
2
, and the corresponding formula rewriting and weight assignments are made as

described in Lemma 4.4. According to Lemma 4.4, X ′d is a base set for φ′ and ω′(φ′) =

ω(φ). Furthermore, ω′(x) = 1
2

for every x ∈ X ′d as assigned in the algorithm. �

By the above theorem, a weighted model counting instance whose weighting

function is specialized as above can be rewritten and solved by any (either exact or

approximate) unweighted model counting engine, since ω(φ) = ω′(φ′) =
∑
τ |=φ′

ω′(τ) =

#φ′/2|X
′
d|, where |X ′d| is the cardinality of the set X ′d. We remark that, given a

variable x and its weight p = k/2n, the cost, in terms of the number of added

variables and clauses, of WmcRewriting is linear to n. In a way, n can be interpreted

as the degree of precision if we attempt to apply WmcRewriting to approximate any

arbitrary probability.

47

doi: 10.6342/NTU202101397

4.3. Solving probabilistic property evaluation

4.3.3 Solving PPE via probabilistic model checking

Probabilistic model checking (PMC) verifies stochastic systems modeled by the vari-

ants of Markov chains, e.g., discrete-time Markov chains (DTMCs), continuous-time

Markov chains, and Markov decision processes, against properties specified in prob-

abilistic temporal logics. We show how to calculate signal probability with the prob-

abilistic model checker PRISM [56], which provides a high level modeling language

to specify probabilistic systems.

We convert an SPBN to a DTMC and encode the calculation of signal probabili-

ties by probabilistic computation tree logic (PCTL) [43]. To illustrate, we briefly in-

troduce the syntax of PRISM. The basic components in PRISM are modules. A module

consists of two parts: variables and commands. Variables describe possible states of

a module, while commands describe its state transitions. A command is composed of

a guard and some updates. For example, “x = 0→ 0.8 : (x′ = 0)+0.2 : (x′ = 1);” is

a command with a guard “x = 0” and an update rule “0.8 : (x′ = 0)+0.2 : (x′ = 1)”.

When the guard is met, i.e., x = 0 at the current time slot, x will remain at value

0 with probability 0.8 or change to 1 with probability 0.2 at the next time slot.

If the guards of multiple commands are met simultaneously at the same time slot,

PRISM will choose exactly one of them to execute uniformly at random. However,

the vertices of an SPBN G = (V,E) operate concurrently. That is, at one time slot,

multiple vertices have to be executed, provided that every fanin of those vertices is

48

doi: 10.6342/NTU202101397

4.3. Solving probabilistic property evaluation

evaluated. Without proper control, PRISM will randomly choose one of these vertices

to execute, and may bias the probabilities specified by the SPBN. To prevent such

bias, we introduce a fresh variable for each vertex to enforce an topological execution

order of logic gates in the SPBN. This construction eliminates the possibility of the

multi-vertex execution at one time slot, and thus preserving the probability specified

in the update rules. Since G is a combinational design, this enforcement of ordering

will not affect the system behavior.

Given an SPBN G = (V,E) with a parameter assignment π to VI , the procedure

to compute the signal probability of an arbitrary vertex with PRISM is as follows.

1. Sort V into a topological order.

2. For each vertex v ∈ V , create a module with two Boolean variables: xv rep-

resents the output variable of vertex v, and yv enforces the execution order in

the DTMC. Both variables are initialized to 0. Let u be the vertex preceding

v in the topological order.

3. If v ∈ VI , add a command: “(yu = 1 & yv = 0) → π(v) : (x′v = 1 & y′v =

1) + 1− π(v) : (x′v = 0 & y′v = 1)” to the module of v.

4. If v ∈ V \ VI , add a command: “(yu = 1 & yv = 0)→ pv : (x′v = ¬fv & y′v =

1) + 1− pv : (x′v = fv & y′v = 1)” to the module of v.

5. Compute the signal probability of any v ∈ V by specifying a PCTL formula

P=?(F (xv = 1)).

49

doi: 10.6342/NTU202101397

4.4. Discussion

The added commands describe the probabilistic behavior of a vertex. Observe

that in both commands, a vertex v is executed only after its preceding vertex u is

executed, and this order in enforced by the variable yv. After the execution of v, yv

is set to 1 to trigger its successive executions. The PCTL formula P=?(F (xv = 1))

computes the probability of xv = 1 in the future. Since in our DTMC, each node is

executed only once, the PCTL formula computes the signal probability of v.

We remark that this transformation brutally encodes each gate into a module in

the DTMC and suffers from the state-space explosion problem. It remains future

investigation to search for better encoding.

4.4 Discussion

We discuss potential applications, extensions, and connections of probabilistic prop-

erty evaluation in the following.

4.4.1 Probabilistic equivalence checking

Given two SPBNs, their equivalence checking can be easily formulated under PPE

and MPPE framework, as depicted in Fig. 4.3. The property network corresponds

to a miter circuit that tests the difference of corresponding outputs of the two

SPBNs, same as in the equivalence checking of deterministic designs. With the

50

doi: 10.6342/NTU202101397

4.4. Discussion

F G

XZ

z1

z2

Figure 4.3: A miter SPBN for probabilistic equivalence checking

proposed framework, we can analyze the average (resp. maximum) probability that

the two SPBNs are functionally different through PPE (resp. MPPE). We refer

to the equivalence checking problem as probabilistic equivalence checking (PEC) for

the average-case analysis and maximum probabilistic equivalence checking (MPEC)

for the worst-case analysis. Since equivalence checking is widely encountered, our

experiments will focus on PEC and MPEC to compare the strengths and weaknesses

of different solutions that we proposed in Section 4.3.

51

doi: 10.6342/NTU202101397

4.4. Discussion

4.4.2 Prioritized output requirement

For some applications, we may want to impose different criticality requirements on

different output signals. Given an SPBN G over primary inputs X, internal vertices

Y , and auxiliary inputs Z, this output-prioritized version of MPPE is naturally

expressible in terms of stochastic integer linear programming (SILP) [105] as follows:

max
X

E[
n∑
i=1

wioi(X, Y, Z)] s.t. φ,

where oi ∈ VO is an output of G, |VO| = n, wi is the weight of oi, E[·] denotes

the expectation value, and φ is a set of linear inequalities derived from the CNF

formula of G through the standard translation from clauses to linear constraints.

To illustrate, a clause (x ∨ ¬y ∨ z) in a CNF formula is transformed into a linear

inequality (x + 1 − y + z) ≥ 1, or (x − y + z) ≥ 0 in φ. Note that the worst case

formulation in Theorem 4.2 is a special case of the SILP formulation where the

expectation value of the miter’s output is maximized.

4.4.3 Connection to approximate design analysis

Approximate design analysis assesses the deviation between an approximate design

and its exact counterpart in two scenarios: the worse and average cases. For the

worst-case analysis, integer linear programming (ILP) can be applied to find an

input assignment to maximize the number of deviating outputs. For the average-case

analysis, model counting can be used to compute the number of input assignments

52

doi: 10.6342/NTU202101397

4.5. Evaluation

that make the two designs have different output responses. In both cases, our PPE

framework can be applied to analyze an approximate design, which can be seen as

a probabilistic design without random behavior. For probabilistic design analysis,

if all random variables become deterministic, then it degenerates to approximate

design analysis (from SILP to ILP under the worst-case analysis and from weighted

model counting to model counting under the average-case analysis).

4.5 Evaluation

We evaluated various techniques to solve the proposed PPE formulation. Specif-

ically, we focus on PEC and MPEC problems, as equivalence checking is widely

encountered in automated design verification.

For the worst-case analysis (i.e., MPEC), two SSAT-based techniques were evalu-

ated. The signal-probability approach via BDD-based SSAT solving is implemented

in the C language inside the ABC [11] environment. The BDD operations are han-

dled by the CUDD [107] package. Our prototyping implementation1 of the signal-

probability approach is named BDDsp. A version of BDDsp without variable reorder-

ing during the BDD construction is called BDDsp-nr in the experiments. We used

commit 2ff8e74 of branch master in the experiments. For the CNF-based SSAT

approach, we employ the state-of-the-art DPLL-based SSAT solver DC-SSAT [73],

1Available at: https://github.com/NTU-ALComLab/ssatABC

53

https://github.com/NTU-ALComLab/ssatABC

doi: 10.6342/NTU202101397

4.5. Evaluation

which was kindly provided by its author Majercik.

For the average-case analysis (i.e., PEC), in addition to the above two SSAT-

based solutions, two techniques based on model counting were also evaluated. A

classic exact model counter Cachet [101, 102] is used for the solution via exact

weighted model counting. Thanks to the proposed formula rewriting that converts

an instance of weighted model counting into an unweighted one, we are able to

leverage the latest developments of approximate model counting. A state-of-the-art

approximate model counter ApproxMC-4.0.1 [15, 16] is applied to solve the converted

instances. To achieve a relatively fair comparison with the other exact techniques,

we set the epsilon parameter to 0.99 and the delta parameter to 0.01 for ApproxMC.

4.5.1 Benchmark set

Combinational circuits from the ISCAS ’85 [12] and EPFL [1] benchmark suites were

used in the experiments. The circuit statistics are shown in Tables 4.1 and 4.2. We

represent the circuits as and-inverter graphs (AIGs). Although the AIG represen-

tation is chosen in our experiments, the proposed formulation and solutions are

applicable to other circuit representations, such as FPGA LUT-based or standard

cell-based designs.

In order to generate circuits with probabilistic errors, we specify an error rate

ε of a probabilistic gate and a defection rate δ of an entire design (i.e., the ratio

54

doi: 10.6342/NTU202101397

4.5. Evaluation

Table 4.1: Circuit statistics of ISCAS benchmark suite

Circuit #PI #PO #And #Level

c1355 41 32 504 26

c1908 33 25 414 32

c2670 233 140 717 21

c3540 50 22 1 038 41

c432 36 7 209 42

c499 41 32 400 20

c5315 178 123 1 773 38

c6288 32 32 2 337 120

c7552 207 108 2 074 29

c880 60 26 327 24

of erroneous gates to all gates in a design). We fixed both parameters to constants

for evaluation and selected probabilistic gates at random according to the defec-

tion rate. In our experiments, ε was set to 0.125, and δ was set to 0.01 and 0.1.

To solve probabilistic equivalence checking, a miter circuit that compares a design

with probabilistic errors against its error-free counterpart is built. Since the two

designs are structurally identical except for the probabilistic gates, logic synthesis

may achieve substantial reduction when the number of erroneous nodes is small.

In our evaluation, we synthesized a miter with the script resyn2 in ABC before ap-

plying the discussed techniques. The statistics of the synthesized miters are shown

in Tables 4.3, 4.4, 4.5, and 4.6. Note that the numbers of auxiliary inputs (AIs) in

55

doi: 10.6342/NTU202101397

4.5. Evaluation

Table 4.2: Circuit statistics of EPFL benchmark suite

Circuit #PI #PO #And #Level

adder 256 129 1 020 255

arbiter 256 129 11 839 87

bar 135 128 3 336 12

cavlc 10 11 693 16

ctrl 7 26 174 10

dec 8 256 304 3

div 128 128 57 247 4 372

hyp 256 128 214 335 24 801

i2c 147 142 1 342 20

int2float 11 7 260 16

log2 32 32 32 060 444

max 512 130 2 865 287

mem ctrl 1 204 1 231 46 836 114

multiplier 128 128 27 062 274

priority 128 8 978 250

router 60 30 257 54

sin 24 25 5 416 225

sqrt 128 64 24 618 5 058

square 64 128 18 484 250

voter 1 001 1 13 758 70

56

doi: 10.6342/NTU202101397

4.5. Evaluation

Table 4.3: Miter statistics of ISCAS benchmark suite (δ = 0.01)

Circuit #PI #AI #And #Level

c1355 41 8 488 26

c1908 33 4 424 28

c2670 233 6 443 17

c3540 50 8 1 261 38

c432 36 2 274 30

c499 41 4 484 24

c5315 178 17 1 262 31

c6288 32 20 3 086 103

c7552 207 27 1 915 30

c880 60 3 220 27

these tables are the numbers of erroneous gates in the circuits. Therefore, a circuit

would have more AIs if the specified defection rate is larger.

4.5.2 Experimental setup

Our experiments were performed on a machine with one 2.2 GHz CPU (Intel Xeon

Silver 4210) with 40 processing units and 134 616 MB of RAM. The operating sys-

tem was Ubuntu 20.04 (64 bit), running Linux 5.4. The programs were compiled

with g++ 9.3.0. Each PEC or MPEC task was limited to a CPU core, a CPU

time of 15 min, and a memory usage of 15 GB. To achieve reliable benchmarking,

57

doi: 10.6342/NTU202101397

4.5. Evaluation

Table 4.4: Miter statistics of ISCAS benchmark suite (δ = 0.1)

Circuit #PI #AI #And #Level

c1355 41 52 783 35

c1908 33 50 785 40

c2670 233 79 1 205 27

c3540 50 108 1 811 53

c432 36 20 390 40

c499 41 40 722 29

c5315 178 159 2 731 44

c6288 32 214 4 250 131

c7552 207 211 3 232 40

c880 60 33 615 33

we used a benchmarking framework BenchExec2 [9], and assumed the maximum

measurement error for run-times is 1 %, which corresponds to 2 significant digits.

4.5.3 Results

PEC instances

The solving results of the PEC instances with the defection rate δ equal 0.01 and 0.1

are shown in Tables 4.7 and 4.8, respectively. The average probabilities for the two

2Available at: https://github.com/sosy-lab/benchexec

58

https://github.com/sosy-lab/benchexec

doi: 10.6342/NTU202101397

4.5. Evaluation

Table 4.5: Miter statistics of EPFL benchmark suite (δ = 0.01)

Circuit #PI #AI #And #Level

adder 256 12 1 245 235

arbiter 256 128 21 590 99

bar 135 45 4 467 23

cavlc 10 13 791 21

ctrl 7 3 31 10

dec 8 8 7 3

div 128 567 83 886 4 446

hyp 256 2 103 343 274 25 380

i2c 147 17 280 23

int2float 11 3 100 12

log2 32 347 53 880 390

max 512 20 5 249 216

mem ctrl 1 204 428 69 983 119

multiplier 128 257 40 136 271

priority 128 8 966 216

router 60 6 324 28

sin 24 66 8 938 196

sqrt 128 274 39 555 5 174

square 64 193 24 505 240

voter 1 001 132 14 167 66

59

doi: 10.6342/NTU202101397

4.5. Evaluation

Table 4.6: Miter statistics of EPFL benchmark suite (δ = 0.1)

Circuit #PI #AI #And #Level

adder 256 112 1 899 294

arbiter 256 1 195 26 444 124

bar 135 335 6 838 29

cavlc 10 67 1 135 25

ctrl 7 21 144 15

dec 8 33 560 15

div 128 5 776 102 085 5 274

hyp 256 21 652 446 257 30 608

i2c 147 124 1 843 25

int2float 11 30 441 22

log2 32 3 234 68 468 499

max 512 261 6 210 280

mem ctrl 1 204 4 700 99 030 158

multiplier 128 2 707 53 421 338

priority 128 89 1 702 294

router 60 29 441 44

sin 24 526 11 799 247

sqrt 128 2 457 45 624 6 504

square 64 1 860 35 015 302

voter 1 001 1 359 21 680 103

60

doi: 10.6342/NTU202101397

4.5. Evaluation

circuits to have different outputs and the CPU time are reported. The symbol “-”

in an entry of the tables indicates the execution ran out of computational resource.

An instance that cannot be solved by any technique is not shown in the tables.

We observe the following phenomenons from these tables. First of all, the defec-

tion rate strongly influences the performance of all methods. As discussed above,

the number of AIs is proportional to the defection rate. More AIs result in more

inputs to a miter and more variables in a formula. Therefore, all of the proposed

techniques performed worse when δ = 0.1. Second, BDDsp solved many instances in

the shortest time among all compared methods. Recall that the complexity of the

proposed BDD-based SSAT solving is linear to the numbers of BDD nodes. The

satisfying probability is readily available as long as the BDD of a miter can be built.

On the other hand, DC-SSAT and Cachet are less competitive in the evaluation.

Both of them failed to handle circuits with more than a thousand gates. Finally,

ApproxMC achieved the best scalability. Although it tends to spend more time for

small- and medium-sized circuits than BDDsp did, it uniquely solved three instances

when δ = 0.01 and four instances when δ = 0.1. Enabling any model counter

to deal with weighted model counting, the proposed formula-rewriting technique

demonstrates its value in improving the scalability to solve the PEC problem.

61

doi: 10.6342/NTU202101397

4.5. Evaluation

Table 4.7: Solving PEC by various techniques (δ = 0.01)

BDDsp DC-SSAT Cachet ApproxMC

Circuit T (s) Pr T (s) Pr T (s) Pr T (s) Pr

adder 0.37 7.28e−1 – – – – 670 7.19e−1

bar 7 9.85e−1 – – – – 580 1.00e+0

c1355 5.2 4.32e−1 – – – – 30 4.30e−1

c1908 0.49 6.25e−2 – – – – 13 6.05e−2

c2670 0.27 3.10e−1 – – – – 470 3.13e−1

c3540 8.3 2.28e−1 – – – – 44 2.30e−1

c432 0.062 3.15e−2 – – 0.29 3.15e−2 12 3.13e−2

c499 2.1 2.62e−1 – – – – 20 2.66e−1

c5315 66 6.53e−1 – – – – 450 6.56e−1

c6288 – – – – – – 69 9.06e−1

c7552 – – – – – – 650 7.03e−1

c880 0.63 1.23e−1 – – 11 1.23e−1 32 1.25e−1

cavlc 0.049 4.96e−2 0.15 4.96e−2 0.11 4.96e−2 18 4.98e−2

ctrl 0.044 1.87e−1 0.0097 1.87e−1 0.035 1.87e−1 1 1.88e−1

dec 0.043 6.56e−1 0.0067 6.56e−1 0.037 6.56e−1 6 6.56e−1

i2c 0.08 4.33e−1 – – 740 4.33e−1 310 4.22e−1

int2float 0.042 6.39e−3 0.011 6.39e−3 0.04 6.39e−3 1 6.47e−3

priority 0.12 3.93e−1 – – – – 170 3.91e−1

router 0.051 9.40e−4 – – 6.8 9.40e−4 37 9.16e−4

sin – – – – – – 490 1.00e+0

62

doi: 10.6342/NTU202101397

4.5. Evaluation

Table 4.8: Solving PEC by various techniques (δ = 0.1)

BDDsp DC-SSAT Cachet ApproxMC

Circuit T (s) Pr T (s) Pr T (s) Pr T (s) Pr

adder 1.8 1.00e+0 – – – – – –

c1355 – – – – – – 290 9.22e−1

c1908 – – – – – – 250 9.22e−1

c432 11 4.99e−1 – – – – 71 4.84e−1

c499 – – – – – – 190 8.13e−1

c880 – – – – – – 190 8.75e−1

cavlc 0.26 6.89e−1 – – 1.8 6.89e−1 330 6.72e−1

ctrl 0.046 8.22e−1 0.049 8.22e−1 0.05 8.22e−1 33 8.28e−1

dec 0.054 9.87e−1 180 9.87e−1 1.3 9.87e−1 82 1.00e+0

int2float 0.057 4.32e−1 4.3 4.32e−1 0.36 4.32e−1 73 4.30e−1

router 0.36 1.76e−1 – – – – 160 1.76e−1

MPEC instances

The solving results of the MPEC instances with the defection rate δ equal 0.01

and 0.1 are shown in Tables 4.9 and 4.10, respectively. The maximum probabilities

for the two circuits to have different outputs and the CPU time are reported. The

symbol “-” in an entry of the tables indicates the execution ran out of computational

resource. An instance that cannot be solved by any technique is not shown in the

tables.

We included BDDsp-nr (i.e., BDDsp without variable reordering) in the MPEC

63

doi: 10.6342/NTU202101397

4.5. Evaluation

experiments. In order to build a smaller BDD, the CUDD package automatically

reorders variables during the BDD construction by default. Variable reordering

usually achieves better results in our empirical experience. For PEC instance, since

both the PI and the AI variables are randomly quantified, the variable order in BDD

construction is irrelevant to signal probability computation. Therefore, we always

enabled this option in the PEC experiments.

However, variable reordering is problematic under the MPEC scenario. For

MPEC instances, since the PI variables are existentially quantified and the AI

variables are randomly quantified, the PI variables must be placed before the AI

variables. The default reordering, nevertheless, might violate such structure. To

make variable reordering respect the quantification prefix, we classify PI and AI

variables into two separate groups and require that variable reordering can only

happen within each group. In the following experiments, we use BDDsp-nr as a

baseline to evaluate the performance of the constrained variable reordering.

From these tables, we observe the following phenomenons. First, the property

violation probabilities between the average case and the worst case can differ for

several orders of magnitude. For example, the difference for circuit router when

δ = 0.01 is about three orders of magnitude. This observation shows the criticality

of the MPPE formulation for scenarios where the worst-case analysis is concerned.

Second, same as the PEC experiments, BDDsp performed much better than DC-SSAT

did. Regarding the reordering of variables, the performance difference is not very

64

doi: 10.6342/NTU202101397

4.5. Evaluation

consistent. There are cases which can be solved by BDDsp within seconds but cannot

be solved by BDDsp-nr, and vice versa. Constrained variable reordering is still useful

in general. However, if the original variable order happens to be good enough for

BDD construction, enabling the constrained reordering would just incur overhead

for run-time.

The above results on the PEC and MPEC instances suggest that:

• The proposed BDD-based SSAT solver BDDsp achieves the best performance

for small- and medium-sized circuits, whose BDDs can be constructed easily.

• The state-of-the-art approximate model counter ApproxMC has the best scala-

bility in our evaluation, which shows the unique value of the proposed formula

rewriting.

• The exact weighted model counter Cachet and the CNF-based SSAT solver

DC-SSAT do not scale well when the circuit size grows.

65

doi: 10.6342/NTU202101397

4.5. Evaluation

Table 4.9: Solving MPEC by various techniques (δ = 0.01)

BDDsp BDDsp-nr DC-SSAT

Circuit T (s) Pr T (s) Pr T (s) Pr

adder 3.6 7.99e−1 – – – –

c1355 22 6.56e−1 1.6 6.56e−1 – –

c1908 0.92 4.14e−1 0.23 4.14e−1 48 4.14e−1

c2670 0.32 5.51e−1 – – – –

c3540 28 6.07e−1 19 6.07e−1 – –

c432 0.064 2.34e−1 0.05 2.34e−1 – –

c499 3.3 4.14e−1 0.39 4.14e−1 – –

c880 0.67 3.30e−1 0.99 3.30e−1 – –

cavlc 1.5 5.42e−1 0.046 5.42e−1 0.15 5.42e−1

ctrl 0.045 2.34e−1 0.044 2.34e−1 0.0073 2.34e−1

dec 0.045 6.56e−1 0.046 6.56e−1 0.0061 6.56e−1

i2c – – 0.37 8.57e−1 – –

int2float 0.046 2.34e−1 0.041 2.34e−1 0.013 2.34e−1

priority 1.8 6.34e−1 0.069 6.34e−1 – –

router 0.054 5.42e−1 0.048 5.42e−1 – –

66

doi: 10.6342/NTU202101397

4.5. Evaluation

Table 4.10: Solving MPEC by various techniques (δ = 0.1)

BDDsp BDDsp-nr DC-SSAT

Circuit T (s) Pr T (s) Pr T (s) Pr

cavlc – – 0.056 9.78e−1 – –

ctrl 0.049 8.65e−1 0.046 8.65e−1 0.058 8.65e−1

dec 0.061 9.88e−1 0.048 9.88e−1 180 9.88e−1

int2float – – 0.047 9.01e−1 4.2 9.01e−1

router – – 2.7 8.96e−1 – –

67

doi: 10.6342/NTU202101397

doi: 10.6342/NTU202101397

Chapter 5

Random-Exist Quantified SSAT

In this chapter, we propose a new algorithm that combines modern SAT-solving

and model-counting techniques for random-exist quantified SSAT formulas. Most

content in this chapter is based on our conference paper [62] published at IJCAI ’17.

5.1 Preliminaries

A random-exist quantified SSAT formula Φ has the form

R

X, ∃Y.φ(X, Y), where X

and Y are two disjoint sets of Boolean variables, and φ(X, Y) is a CNF formula.

69

doi: 10.6342/NTU202101397

5.1. Preliminaries

5.1.1 Generalization of SAT/UNSAT minterms

Given an assignment τ over X, if φ(X, Y)|τ is satisfiable (resp. unsatisfiable), τ is

called a SAT (resp. an UNSAT) minterm of φ over X. The generalization process of

a SAT or an UNSAT minterm τ aims at expanding it to a cube τ+, while maintaining

the satisfiability of φ(X, Y)|τ+ the same as φ(X, Y)|τ .

Example 5.1. Consider formula φ(x1, x2, y1, y2) = x1∧(¬x2∨y1∨y2). The complete

assignment τ = x1x2 over X, i.e., τ(x1) = >, τ(x2) = >, is a SAT minterm of φ

over X because φ|τ is satisfiable by the assignment µ = y1y2. On the other hand,

the partial assignment τ+ = ¬x1, i.e., τ+(x1) = ⊥, is an UNSAT cube of φ as φ|τ+

is unsatisfiable.

Minimum satisfying assignment

For a CNF formula φ(X, Y), let τ be a SAT minterm over X and let µ be a satisfying

complete assignment for the induced formula φ(X, Y)|τ over Y . To generalize τ into

a cube, one can find a subset of literals from τ and µ that are able to satisfy all clauses

in φ while the number of literals taken from τ is as few as possible. If some literals in

τ are irrelevant to the satisfiability, they can be dropped from τ , thus expanding τ to

a SAT cube τ+. The generalized cube τ+ is called a minimum satisfying assignment

if the number of literals taken from τ is minimized. The process of finding a minimum

satisfying assignment is also known as finding a minimum hitting set.

70

doi: 10.6342/NTU202101397

5.2. Solving random-exist quantified SSAT

Minimum conflicting assignment

Given an UNSAT minterm τ of a formula φ, modern SAT solvers, e.g., MiniSat [33,

34], are able to compute a conjunction of literals from τ that is responsible for the

conflict. If some literals in τ are irrelevant to the conflict, they are dropped from

τ , thus expanding τ to an UNSAT cube τ+. If the number of literals in an UNSAT

cube τ+ is minimized, τ+ is called a minimum conflicting assignment. The process

of finding a minimum conflicting assignment is also known as finding a minimum

UNSAT core.

5.2 Solving random-exist quantified SSAT

Consider a random-exist quantified SSAT formula Φ =

R

X, ∃Y.φ(X, Y). The sat-

isfying probability of Φ equals the summation of weight of all SAT minterms over

X, or, equivalently, 1 minus the summation of weight of all UNSAT minterms over

X. To identify an assignment τ over X as a SAT or an UNSAT minterm, it suffices

to check whether φ(X, Y)|τ is satisfiable or not. A naive solution to computing

the satisfying probability of Φ is to exhaustively examine all assignments over X,

classify them as SAT or UNSAT minterms, and aggregate the weight of collected

minterms.

The above naive idea can be improved by exploiting the minterm-generalization

techniques discussed in Section 5.1.1. For instance, in Example 5.1, τ = x1x2 is

71

doi: 10.6342/NTU202101397

5.2. Solving random-exist quantified SSAT

a SAT minterm over {x1, x2} for φ(x1, x2, y1, y2) = x1 ∧ (¬x2 ∨ y1 ∨ y2). Observe

that φ(x1, x2, y1, y2) is satisfiable under the partial assignment τ+ = x1. In other

words, the SAT minterm τ can be generalized into the SAT cube τ+, which contains

two minterms. Through the generalization analysis, multiple minterms can be col-

lected in a single SAT-solving run, enhancing the efficiency to enumerate all possible

assignments over X. As will be shown in Section 5.4, the minterm-generalization

techniques are essential to the efficiency of the proposed algorithm. However, the

weight of each collected cube cannot be summed up directly due to the potential

overlap between generalized cubes. This difficulty is overcome by applying weighted

model counting, which aggregates the total weight of the collected cubes correctly,

taking the overlap into account.

The above thoughts give rise to the proposed algorithm in Alg. 4 to compute

the satisfying probability of Φ =

R

X, ∃Y.φ(X, Y). The proposed algorithm works as

follows. For now, assume the run-time limit TO to be infinity. The effect of imposing

a run-time limit on Alg. 4 will be explained in Section 5.2.4. Two SAT solvers are

used in Alg. 4. In addition to the SAT solver that holds the matrix CNF φ(X, Y),

the other SAT solver ψ(X), named the selector in the following, is initialized as

a tautology, i.e., without clauses. The selector ψ(X) is in charge of selecting an

assignment τ over X. After τ is chosen, the matrix solver φ(X, Y) will check whether

φ(X, Y)|τ is satisfiable or not. If φ(X, Y)|τ is satisfiable, τ will be generalized into

a SAT cube by the subroutine MinimalSatisfying; if φ(X, Y)|τ is unsatisfiable, τ

will be generalized into an UNSAT cube by the subroutine MinimalConflicting.

72

doi: 10.6342/NTU202101397

5.2. Solving random-exist quantified SSAT

Algorithm 4 Solving random-exist quantified SSAT formulas

Input: Φ =

R

X, ∃Y.φ(X, Y) and a run-time limit TO

Output: Lower and upper bounds (PL, PU) of Pr[Φ]

1: ψ(X) := >

2: C> := ∅

3: C⊥ := ∅

4: while (SAT(ψ) and run-time < TO) do

5: τ := ψ.model

6: if (SAT(φ|τ)) then

7: τ+ := MinimalSatisfying(φ, τ)

8: C> := C> ∪ {τ+}

9: else

10: τ+ := MinimalConflicting(φ, τ)

11: C⊥ := C⊥ ∪ {τ+}

12: end if

13: ψ := ψ ∧ ¬τ+

14: end while

15: return (ComputeWeight(C>), 1− ComputeWeight(C⊥))

73

doi: 10.6342/NTU202101397

5.2. Solving random-exist quantified SSAT

Instead of finding a minimum satisfying or conflicting assignment, which is com-

putationally expensive, we resort to finding a minimal satisfying or conflicting as-

signment, i.e., an assignment that has no literals removable without affecting the

(un)satisfiability, to leverage the efficient UNSAT-core computation for effective gen-

eralization. After τ is generalized to τ+ and enlisted in C⊥ or C>, the negation of τ+,

which becomes a blocking clause, will be conjoined with ψ to prune the assignments

contained by τ+.

The above process is repeated until ψ becomes unsatisfiable, which signifies

the Boolean space spanned by X has been exhaustively searched. The subrou-

tine ComputeWeight is then invoked to evaluate the weight of the collected cubes.

The subroutines MinimalConflicting, MinimalSatisfying, and ComputeWeight

will be detailed below.

5.2.1 Minimal satisfying assignment

Given a SAT minterm τ overX, let µ be a satisfying assignment over Y for φ(X, Y)|τ .

The subroutine MinimalSatisfying generalizes τ to τ+ by the following steps.

a) Remove every clause C in φ(X, Y)|τ that contains some true literal from µ.

b) For each literal l in τ , drop l and examine whether the rest of clauses remain

satisfied by scanning these clauses and checking if each of them still contains

some true literal. If the rest of clauses are still satisfied, discard l; otherwise,

74

doi: 10.6342/NTU202101397

5.2. Solving random-exist quantified SSAT

put l in τ+.

After the above steps, the SAT minterm τ will be generalized into a minimal satis-

fying assignment τ+.

5.2.2 Minimal conflicting assignment

Let τ be an UNSAT minterm over X for φ(X, Y). The analysis of unsatisfiability

can be done with a modern SAT solver (e.g., using function analyzeFinal() in

MiniSat) to find a conjunction of literals from τ responsible for the conflict. How-

ever, in general this conjunction of literals might not be minimal, and some of the

literals could be dropped. The subroutine MinimalConflicting takes the conjunc-

tion of literals responsible for the conflict computed by a SAT solver and makes it

minimal as follows. For each literal l in the conjunction, drop l and examine whether

φ(X, Y) remains unsatisfiable by invoking a SAT call. If it is unsatisfiable, discard

l; otherwise, put l in τ+. After the above steps, the UNSAT minterm τ will be

generalized into a minimal conflicting assignment τ+.

5.2.3 Weight computation

The subroutine ComputeWeight aggregates the weight of collected cubes by invoking

a weighted model counter. Because a weighted model counter takes CNF formulas

as input, ComputeWeight first negates each collected cube to turn it into a clause,

75

doi: 10.6342/NTU202101397

5.2. Solving random-exist quantified SSAT

and conjoins the resulting clauses into a CNF formula. As the CNF formula is the

negation of the disjunction of the cubes, the weight of the cubes equals 1 minus the

weight of the CNF formula, which is computed by a weighted model counter.

5.2.4 Modification for approximate SSAT

The proposed algorithm can be easily modified to solve approximate SSAT, where

upper and lower bounds of the satisfying probability of an SSAT formula are com-

puted. Suppose Alg. 4 is forced to terminate before the selector ψ becomes unsat-

isfiable. The weights of the collected SAT and UNSAT cubes are still valid and

can be aggregated by ComputeWeight, and the resulted weights reflect the lower

and upper bounds of the satisfying probability, respectively. The early termination

can be triggered by imposing a run-time limit for Alg. 4. Compared to previous

DPLL-based approaches that branch on a single variable, the proposed algorithm

considers all randomly quantified variables together and exploits the concept of SAT

and UNSAT cubes over the Boolean space spanned by randomly quantified variables,

making the intermediate collected SAT and UNSAT cubes convey useful information

about the upper and lower bounds of the exact satisfying probability. Compared

to the DPLL-based state-of-the-art methods, which cannot be easily modified for

approximate SSAT, the proposed method enjoys the flexibility of solving SSAT ap-

proximately or exactly, depending on the imposed run-time constraint.

We note that the proposed algorithm is more efficient in memory consumption

76

doi: 10.6342/NTU202101397

5.2. Solving random-exist quantified SSAT

than previous DPLL-based algorithms. Prior DPLL-based algorithms mostly apply

subproblem memorization to avoid repeated computation on the same subproblem.

However, without special treatment, such memorization may result in rapid growth

in memory usage. On the other hand, in the proposed algorithm, the numbers

of collected cubes are greatly reduced by the minterm-generalization techniques,

which gives rise to the memory efficiency. In our empirical evaluation, the proposed

algorithm consumed two orders of magnitude less memory than the state-of-the-art

DPLL-based solver.

Example 5.2. Consider a random-exist quantified SSAT formula

Φ =

R0.5r1,

R0.5r2,

R0.5r3,∃e1,∃e2,∃e3.φ,

with φ consisting of the following clauses:

C1 : (r1 ∨ r2 ∨ e1)

C2 : (r1 ∨ ¬r3 ∨ e2)

C3 : (r2 ∨ ¬r3 ∨ ¬e1 ∨ ¬e2)

C4 : (r3 ∨ e3)

C5 : (r3 ∨ ¬e3)

The solving process is summarized in Table 5.1. In the beginning, the selector

ψ(r1, r2, r3) is initialized without clauses, and the sets C> and C⊥ to collect SAT and

77

doi: 10.6342/NTU202101397

5.2. Solving random-exist quantified SSAT

Table 5.1: Solving process of Alg. 4 on Example 5.2

Assignment Minterm Type Generalization UB LB

τ1 = ¬r1¬r2¬r3 UNSAT τ+
1 = ¬r3 0.5 0

τ2 = ¬r1¬r2r3 UNSAT τ+
2 = ¬r1¬r2 0.375 0

τ3 = ¬r1r2r3 SAT τ+
3 = r2r3 0.375 0.25

τ4 = r1¬r2r3 SAT τ+
4 = r1r3 0.375 0.375

UNSAT cubes are empty. Suppose ψ first selects an assignment τ1 = ¬r1¬r2¬r3.

Since φ|τ1 is unsatisfiable due to the conflict between C4 and C5, the subroutine

MinimalConflicting returns τ+
1 = ¬r3, which is the minimal conflicting assign-

ment responsible for this conflict. Note that this minimal conflicting assignment

τ+
1 reflects an upper bound of 0.5 for Pr[Φ]. The selector ψ is then strengthened

through conjunction with the negation of τ+
1 to block the searched subspace. Next,

suppose τ2 = ¬r1¬r2r3 is selected. Under τ2, formula φ|τ2 is unsatisfiable due to

the conflict among clauses C1, C2, and C3, and the minimal conflicting assignment

τ+
2 equals ¬r1¬r2. After conjoining ψ with ¬τ+

2 , suppose τ3 = ¬r1r2r3 is chosen.

Formula φ|τ3 is satisfiable through the assignment µ3 = ¬e1e2¬e3. The subrou-

tine MinimalSatisfying is invoked to generalize τ3 to τ+
3 = r2r3, which reflects

a lower bound of 0.25 for Pr[Φ]. Similarly, the negation of τ+
3 is conjoined with

ψ. Next, let the assignment chosen by ψ be τ4 = r1¬r2r3. Since φ|τ4 is satisfiable

through the assignment µ4 = ¬e1¬e2¬e3, assignment τ4 is generalized to τ+
4 = r1r3

by MinimalSatisfying. After conjoined with ¬τ+
4 , formula ψ becomes unsatisfiable,

78

doi: 10.6342/NTU202101397

5.3. Applications

which indicates the Boolean space over {r1, r2, r3} has been explored exhaustively. At

the end, we have C⊥ = {τ+
1 , τ

+
2 } = {¬r3,¬r1¬r2} and C> = {τ+

3 , τ
+
4 } = {r2r3, r1r3}.

The subroutine ComputeWeight is finally invoked and returns 0.375 as the satisfying

probability of Φ.

For approximate SSAT solving, suppose the procedure is forced to terminate right

after τ+
3 is collected. The subroutine ComputeWeight will be invoked over C> =

{r2r3} and C⊥ = {¬r3,¬r1¬r2}. The cubes in C> or C⊥ are negated into CNF

formulas for weighted model counting. To compute an upper bound, the UNSAT

cubes ¬r3 and ¬r1¬r2 are rewritten into a CNF formula (r3)∧ (r1 ∨ r2) and yields a

probability of 0.375 with respect to the weights specified by the prefix. This probability

is the satisfying probability of the negation of the UNSAT cubes, which gives an upper

bound of 0.375 for Pr[Φ]. Similarly, we can obtain a lower bound of 0.25 for Pr[Φ]

from the SAT cube r2r3.

5.3 Applications

In this section, we discuss several applications of random-exist quantified SSAT

formulas.

79

doi: 10.6342/NTU202101397

5.4. Evaluation

5.3.1 Probability of success in planning

Many planning problems can be formulated in terms of forall-exist QBFs, i.e., QBFs

of the form Φ = ∀X, ∃Y.φ(X, Y). Changing the universal quantifiers of these QBFs

to randomized ones yields random-exist quantified SSAT formulas. Under the game

interpretation of QBFs, the satisfying probability of such an SSAT formula corre-

sponds to the likelihood for the existential player to win the game if the universal

player decides its moves at random. In Section 5.4, we will use the strategic compa-

nies problem [14] as an example to evaluate SSAT solvers on planning applications.

5.3.2 Probabilistic circuit verification

The second application is the formal verification of probabilistic design. As proba-

bilistic errors are becoming more common in advanced nanometer technology, the

probabilistic equivalence checking (PEC) problem asks to compute the probability

for a probabilistic circuit to produce different outputs from its faultless specification.

PEC can be encoded into a random-exist quantified SSAT formula [60].

5.4 Evaluation

We evaluated the proposed Alg. 4 against the state-of-the-art DPLL-based SSAT

solver DC-SSAT [73] over three families of random-exist quantified SSAT formulas.

80

doi: 10.6342/NTU202101397

5.4. Evaluation

The proposed algorithm is implemented in the C++ language inside the ABC [11]

environment. The SAT solver MiniSat-2.2 [33] and the model counter Cachet [101]

are used as underlying computational engines. Our prototyping implementation1 is

named reSSAT. A bare version of reSSAT without minterm generalization is called

reSSAT-b in the experiments. We used commit 2ff8e74 of branch master for the

evaluation. The solver DC-SSAT, which is also implemented in the C++ language, was

kindly provided by its author Majercik.

5.4.1 Benchmark set

We evaluated the SSAT solvers with both random and application formulas. These

formulas are hosted in a publicly available repository2. We used commit ea9fbae

of branch master in the experiments.

Random k-CNF formulas

The random k-CNF formulas are generated using the CNF generator CNFgen [57].

Let k be the number of literals in a clause, n be the number of variables of a formula,

and m be the number of clauses of a formula. The CNF formulas were generated

with the following parameter settings. Let k range from 3 to 9, n equal 10, 20, 30,

40, and 50, and the clauses-to-variables ratio m
n

range from k − 1 to k + 2. For

1Available at: https://github.com/NTU-ALComLab/ssatABC
2Available at: https://github.com/NTU-ALComLab/ssat-benchmarks

81

https://github.com/NTU-ALComLab/ssatABC
https://github.com/NTU-ALComLab/ssat-benchmarks

doi: 10.6342/NTU202101397

5.4. Evaluation

each combination of parameters, five formulas were sampled. As a result, 700 CNF

formulas were generated. To convert the generated formulas to random-exist quan-

tified SSAT formulas, half of the variables in a formula are randomly quantified with

probability 0.5, and the rest of the variables are existentially quantified.

Application formulas

There are two families of application formulas. The first family consists of formulas

that encode a planning problem Strategic-Company [14]. We briefly describe the

problem as follows. Suppose a businessman owns n companies that produce m dif-

ferent kinds of products. A company is strategic if it is in a minimal set of companies

that together produce all kinds of products. The information about a company being

strategic is valuable to the businessman. Suppose the businessman considers selling

out some companies upon a financial crisis, but still hopes to produce every kind

of products. The businessman would prefer selling out a non-strategic company.

The problem becomes more complicated if the controlling relations are taken into

account. If a company is controlled by some other companies, the company can be

sold out only if some of its controlling companies is also sold out. The problem to

decide whether a company is strategic can be encoded as a forall-exist QBF [35, 64].

We modify the QBFs encoding the strategic-company problem to their SSAT

variants by replacing the universal quantifiers in the original QBFs with randomized

ones with probabilities 0.5. These QBFs are taken from QBFLIB [88]. The satisfying

82

doi: 10.6342/NTU202101397

5.4. Evaluation

probability reflects the likelihood for a company to be strategic. The QBFs that we

experimented with have the following parameter settings: n equals 5, 10, 15, . . ., 75,

m = 3n, and the number of controlling relations equals 4, 9, 14, and 19. In total,

there are 60 formulas in the Strategic-Company family.

The second family consists of formulas that encode the average-case analysis of

equivalence checking for probabilistic designs. These PEC formulas are borrowed

from Chapter 4 and their creation is briefly explained as follows. For more details,

please refer to Section 4.5. A circuit with probabilistic errors is generated by ran-

domly assigning gates in its faultless counterpart to be erroneous. Two parameters

are specified to control the generation of probabilistic circuits. The error rate ε con-

trols the probability of the occurrence of an error at a logic gate. The defect rate δ

controls the ratio of the number of erroneous gates to the total number of gates in

a design. These SSAT formulas are derived from the ISCAS ’85 [12] and EPFL [1]

benchmark suites with ε = 0.125 and δ = 0.01, 0.1. In total, there are 60 formulas

in the PEC family.

5.4.2 Experimental setup

Our experiments were performed on a machine with one 2.2 GHz CPU (Intel Xeon

Silver 4210) with 40 processing units and 134 616 MB of RAM. The operating sys-

tem was Ubuntu 20.04 (64 bit), running Linux 5.4. The programs were compiled

with g++ 9.3.0. Each SSAT-solving task was limited to a CPU core, a CPU time

83

doi: 10.6342/NTU202101397

5.4. Evaluation

of 15 min, and a memory usage of 15 GB. To achieve reliable benchmarking, we used

a benchmarking framework BenchExec3 [9], and assumed the maximum measure-

ment error for run-times is 1 %, which corresponds to 2 significant digits.

5.4.3 Results

Random k-CNF formulas

Fig. 5.1 shows the quantile plots regarding CPU time and memory usage of the

SSAT instances derived from the random k-CNF formulas. A data point (x, y)

in a quantile plot indicates that there are x formulas processed by the respective

algorithm within a resource constraint of y. In Fig. 5.1a, we observe that reSSAT not

only solved more formulas than DC-SSAT, but was also more efficient. Moreover, the

minterm-generalization technique is crucial for the performance of reSSAT, as can be

seen from the huge gap between reSSAT and reSSAT-b. On the other hand, Fig. 5.1b

shows that the memory usage of DC-SSAT is about two orders of magnitude greater

than that of reSSAT for large formulas. This can be attributed to the subformula

caching of DC-SSAT. Instead, reSSAT stores information as SAT or UNSAT cubes,

which are more compact than subformulas.

84

doi: 10.6342/NTU202101397

5.4. Evaluation

0 200 400 600
10−3

10−2

10−1

100

101

102

103

n-th fastest result

T
im

e
(s
)

DC-SSAT
reSSAT-b
reSSAT

(a) CPU time

0 200 400 600
105

106

107

108

109

1010

n-th smallest result

M
em

or
y
(B

)

DC-SSAT
reSSAT-b
reSSAT

(b) Memory usage

Figure 5.1: Quantile plots of random k-CNF formulas

85

doi: 10.6342/NTU202101397

5.4. Evaluation

Table 5.2: Summary of the results for 60 strategic-company formulas

Algorithm DC-SSAT reSSAT reSSAT-b

Solved formulas 28 60 12

Timeouts 32 0 48

Out of memory 0 0 0

Other inconclusive 0 0 0

Application formulas

The solving results for the Strategic-Company family are summarized in Table 5.2.

Observe that reSSAT successfully solved all formulas in this family, while DC-SSAT

and reSSAT-b only solved 28 and 12 formulas, respectively. The results show that

reSSAT also works well over structured instances from AI applications.

Fig. 5.2 shows the quantile plots for the Strategic-Company family. The quantile

plots show that reSSAT is not only effective but also efficient in terms of CPU time

and memory usage. The performance gap between reSSAT and reSSAT-b again

confirms the importance of the minterm-generalization technique. Fig. 5.3 shows

the scatter plots, which indicate the great improvement for the run-time efficiency

of reSSAT.

The solving results for the PEC family are summarized in Table 5.3. Note that

3Available at: https://github.com/sosy-lab/benchexec

86

https://github.com/sosy-lab/benchexec

doi: 10.6342/NTU202101397

5.4. Evaluation

0 10 20 30 40 50 60
10−3

10−2

10−1

100

101

102

103

n-th fastest result

T
im

e
(s
)

DC-SSAT
reSSAT-b
reSSAT

(a) CPU time

0 10 20 30 40 50 60
105

106

107

108

109

1010

n-th smallest result

M
em

or
y
(B

)

DC-SSAT
reSSAT-b
reSSAT

(b) Memory usage

Figure 5.2: Quantile plots of strategic-company formulas

87

doi: 10.6342/NTU202101397

5.4. Evaluation

10−2 10−1 100 101 102 103
10−2

10−1

100

101

102

103

(a) reSSAT-b

10−2 10−1 100 101 102 103
10−2

10−1

100

101

102

103

(b) DC-SSAT

Figure 5.3: Run-time scatter plots of strategic-company formulas with reSSAT in

y-axis and compared approaches in x-axis

88

doi: 10.6342/NTU202101397

5.4. Evaluation

Table 5.3: Summary of the results for 60 PEC formulas

Algorithm DC-SSAT reSSAT reSSAT-b

Solved formulas 7 3 3

Timeouts 15 57 57

Out of memory 28 0 0

Other inconclusive 10 0 0

all the evaluated SSAT solvers failed to exactly solve most formulas in this family.

This phenomenon is similar to a concluding remark from Chapter 4 that states CNF-

based SSAT solvers do not scale nicely when the circuit size grows. Nevertheless,

recall that the proposed Alg. 4 is able to derive upper and lower bounds of the

satisfying probability even if it could not exactly solve a large instance. We will

investigate the approximation ability of reSSAT in the following.

Tables 5.4 and 5.5 show the results of solving PEC formulas with δ equal to 0.01

and 0.1, respectively. As BenchExec sends a timeout signal to reSSAT after 15 min,

we allow an additional 100 sec for reSSAT to compute the weights of the collected

cubes. In our evaluation, the numbers of the SAT cubes are often much greater

than those of the UNSAT cubes. In order to successfully deliver useful information

upon timeout, reSSAT will first invoke Cachet over the UNSAT cubes to calculate

an upper bound. After Cachet finishes this weight-computation query, reSSAT will

call it again over the SAT cubes to obtain a lower bound. Unfortunately, due to

89

doi: 10.6342/NTU202101397

5.4. Evaluation

the huge numbers of SAT cubes, Cachet failed to complete the queries within the

additional 100 sec. As a result, the following tables only report upper bounds (UB)

when reSSAT suffered from timeouts. Nevertheless, this is only a technical limitation

in our evaluation, and it should not be misunderstood as the proposed Alg. 4 cannot

derive lower bounds.

From these tables, we observe the following phenomenons. First, reSSAT was

able to exactly solve a formula or derive a very tight upper bound when DC-SSAT

solved the formula exactly. Second, reSSAT was able to compute useful upper bounds

on larger formulas which DC-SSAT failed to solve. Compared to Tables 4.7 and 4.8,

these upper bounds are often close to the exact probabilities obtained by the BDD-

based SSAT solver. Third, the proposed minterm-generalization technique helps to

tighten the obtained upper bounds.

The above results on the random and application formulas suggest that:

• The proposed solver reSSAT outperforms DC-SSAT in terms of both CPU time

and memory consumption on random and strategic-company formulas.

• The proposed solver reSSAT is able to derive non-trivial bounds of satisfy-

ing probability, while DC-SSAT suffered from timeouts on most of the PEC

formulas.

• The minterm-generalization technique is of vital importance to improve the

performance of reSSAT.

90

doi: 10.6342/NTU202101397

5.4. Evaluation

Table 5.4: Results of solving the PEC formulas (δ = 0.01)

DC-SSAT reSSAT reSSAT-b

Formula T (s) Pr T (s) Pr UB T (s) Pr UB

adder – – – – 7.98e−1 – – –

bar – – – – 9.98e−1 – – –

c1908 – – – – – – – 2.65e−1

c2670 – – – – 5.03e−1 – – 1.00e+0

c3540 – – – – 2.98e−1 – – 9.96e−1

c432 – – – – 3.15e−2 – – 5.92e−1

c5315 – – – – 9.66e−1 – – –

c6288 – – – – 1.00e+0 – – 1.00e+0

c880 – – – – 1.74e−1 – – 8.83e−1

cavlc 0.16 4.96e−2 – – 4.96e−2 – – 4.96e−2

ctrl 0.012 1.87e−1 0.076 1.87e−1 – 0.079 1.87e−1 –

dec 0.0092 6.56e−1 0.075 6.56e−1 – 10 6.56e−1 –

i2c – – – – 8.18e−1 – – 8.07e−1

int2float 0.018 6.39e−3 0.085 6.39e−3 – 0.11 6.39e−3 –

max – – – – 9.74e−1 – – –

priority – – – – 7.61e−1 – – –

router – – – – 1.41e−3 – – 2.41e−1

91

doi: 10.6342/NTU202101397

5.4. Evaluation

Table 5.5: Results of solving the PEC formulas (δ = 0.1)

DC-SSAT reSSAT reSSAT-b

Formula T (s) Pr T (s) Pr UB T (s) Pr UB

c1908 – – – – 1.00e+0 – – –

c3540 – – – – 1.00e+0 – – –

c432 – – – – 7.81e−1 – – 9.76e−1

c880 – – – – 9.98e−1 – – –

cavlc – – – – 7.66e−1 – – 8.88e−1

ctrl 0.053 8.22e−1 – – 8.49e−1 – – 8.73e−1

dec 180 9.87e−1 – – 9.88e−1 – – 9.99e−1

i2c – – – – 9.98e−1 – – –

int2float 4.3 4.32e−1 – – 5.22e−1 – – 6.46e−1

max – – – – 1.00e+0 – – –

priority – – – – 1.00e+0 – – –

router – – – – 2.41e−1 – – 3.10e−1

92

doi: 10.6342/NTU202101397

Chapter 6

Exist-Random Quantified SSAT

In this chapter, we propose a new algorithm motivated by a recent QBF-solving

technique for exist-random quantified SSAT formulas, which are also known as E-

MAJSAT formulas [68]. Most content in this chapter is based on our conference

paper [63] published at IJCAI ’18.

6.1 Preliminaries

An E-MAJSAT formula Φ has the form ∃X, R

Y.φ(X, Y), where X and Y are two

disjoint sets of Boolean variables, and φ(X, Y) is a CNF formula.

93

doi: 10.6342/NTU202101397

6.1. Preliminaries

6.1.1 Solving E-MAJSAT with weighted model counting

Given an E-MAJSAT formula Φ = ∃X, R

Y.φ(X, Y) and an assignment τ over X,

cofactoring the matrix with τ results in a formula φ|τ referring only to variables in

Y . The prefix

R

Y induces a weighting function ω : Y 7→ [0, 1] for each variable

y ∈ Y , where ω(y) equals the probability annotated on the randomized quantifier

of y. As a result, the conditional satisfying probability Pr[

R

Y.φ|τ], which equals

the weight of the formula φ|τ under the weighting function ω, can be obtained by

invoking a weighted model counter. In the following, the invocation to a weighted

model counter is expressed by ComputeWeight(

R

Y.φ|τ), which returns the condi-

tional satisfying probability Pr[

R

Y.φ|τ].

6.1.2 Clause selection

Clause selection [46, 96] is a novel technique for QBF solving. Given a CNF formula

φ(X, Y) over are two disjoint variable sets X and Y , we divide each clause C ∈ φ

into two sub-clauses CX and CY , where CX (resp. CY) consists of the literals whose

variables are from X (resp. Y). For example, given a clause C = (x1 ∨x2 ∨ y1 ∨ y2),

we have CX = (x1 ∨ x2) and CY = (y1 ∨ y2). Clearly, C = CX ∨ CY .

A clause C is said to be selected by an assignment τ over X if τ falsifies every

literal in CX ; C is said to be deselected if τ assigns some literal in CX to >; C

is said to be undecided if it is neither selected nor deselected. We also use φ|τ to

94

doi: 10.6342/NTU202101397

6.1. Preliminaries

denote the set of clauses selected by an assignment τ over X.

A selection variable sC is introduced for each clause C and defined by sC ≡ ¬CX .

Hence, sC is an indicator of the selection of clause C. That is, sC = > (resp. sC = ⊥)

indicates C is selected (resp. deselected). Let S be the set of selection variables for

clauses in φ(X, Y). The formula ψ(X,S) =
∧
C∈φ

(sC ≡ ¬CX) is called a selection

relation of φ(X, Y).

Example 6.1. Consider a formula φ(X, Y) over two variable sets X = {e1, e2, e3}

and Y = {r1, r2, r3}. φ(X, Y) consists of four clauses:

C1 : (e1 ∨ r1 ∨ r2)

C2 : (e1 ∨ e2 ∨ r1 ∨ r2 ∨ ¬r3)

C3 : (¬e2 ∨ ¬e3 ∨ r2 ∨ ¬r3)

C4 : (¬e1 ∨ e3 ∨ r3)

A set S of selection variables {s1, s2, s3, s4} is introduced for each clause, respectively.

The selection relation ψ(X,S) of φ(X, Y) equals

ψ(X,S) = (s1 ≡ ¬e1) ∧ (s2 ≡ ¬e1 ∧ ¬e2) ∧ (s3 ≡ e2 ∧ e3) ∧ (s4 ≡ e1 ∧ ¬e3).

Consider a complete assignment τ1 = ¬e1¬e2¬e3 over X. C1 and C2 are selected

while C3 and C4 are deselected, as can be seen from the selection relation cofactored

with τ1, which results in ψ(X,S)|τ1 = s1s2¬s3¬s4. Consider a partial assignment

95

doi: 10.6342/NTU202101397

6.2. Clause-containment learning for E-MAJSAT

τ2 = ¬e1e3 over X. It selects C1, deselects C4, and leaves C2 and C3 undecided.

Notice that the two complete assignments ¬e1¬e2e3 and ¬e1e2e3 consistent with τ2

select {C1, C2} and {C1, C3}, respectively. The clause C1 selected by the partial as-

signment τ2 lies in the intersection of the sets of clauses selected by the two complete

assignments consistent with τ2.

6.2 Clause-containment learning for E-MAJSAT

Consider an E-MAJSAT formula Φ = ∃X, R

Y.φ. To obtain the satisfying probability

of Φ, it suffices to enumerate every assignment τ over X and calculate the corre-

sponding conditional satisfying probability Pr[Φ|τ]. Clearly, the above brute-force

approach is computationally expensive. Motivated by the idea of clause selection

discussed above, we propose clause-containment learning to prune the search space.

The proposed learning technique deduces useful information after each trial of an

assignment τ over X. The learnt information is recorded as blocking clauses to avoid

wasteful exploration and thus accelerates the search process. The proposed learning

technique is based on the following key observation.

Proposition 6.1. Given an E-MAJSAT formula Φ = ∃X, R

Y.φ(X, Y) and two

assignments τ1, τ2 over X, we have:

(φ|τ2 → φ|τ1)→ Pr[Φ|τ2] ≤ Pr[Φ|τ1].

Inspired by Proposition 6.1, we propose clause-containment learning based on

96

doi: 10.6342/NTU202101397

6.2. Clause-containment learning for E-MAJSAT

clause selection. After cofactoring φ with an arbitrary assignment τ1 over X, a set

φ|τ1 of clauses is selected. For any other assignment τ2 selecting all clauses from

φ|τ1 , i.e., φ|τ1 ⊆ φ|τ2 , we have φ|τ2 → φ|τ1 . Therefore, Pr[Φ|τ2] ≤ Pr[Φ|τ1] holds

according to Proposition 6.1. Since the satisfying probability Pr[Φ|τ2] is not greater

than Pr[Φ|τ1], the assignment τ2 is not worth trying. For all such assignments, they

should be blocked after τ1 has been explored.

The core concept of the clause-containment learning is to avoid every unexplored

assignment τ2 that selects a clause set φ|τ2 containing another clause set φ|τ1 selected

by an explored assignment τ1. To block the assignment τ2, we enforce at least one

of the clauses in φ|τ1 to be deselected. Recall that the selection variable sC of clause

C valuates to ⊥ if and only if C is deselected. Therefore, the disjunction of the

negation of the selection variables for the clauses in φ|τ1 is deduced as a learnt clause

to record this information. The above idea gives rise to Alg. 5 for solving E-MAJSAT

formulas. (Lines 3, 7, 8, and 11 describe the clause-strengthening heuristics of the

proposed algorithm, which will be discussed later.)

The algorithm employs two SAT solvers: one works on the matrix φ(X, Y) of

the input formula, and the other works on the selection relation ψ(X,S) for clauses

in φ(X, Y). Using the definition of selection variables, we initialize the selection

relation and assert the literals of pure X variables in line 1. If a variable e in X is

pure in φ, assigning the literals of e to > deselects the clauses containing e, and does

not affect other clauses. Because the conditional satisfying probability is greater if

97

doi: 10.6342/NTU202101397

6.2. Clause-containment learning for E-MAJSAT

Algorithm 5 Solving exist-random quantified SSAT (E-MAJSAT) formulas

Input: Φ = ∃X, R

Y.φ(X, Y)

Output: Pr[Φ]

1: ψ(X,S) :=
∧
C∈φ

(sC ≡ ¬CX) ∧ ∧
pure l:var(l)∈X

l

2: prob := 0

3: s-table := BuildSubsumptionTable(φ)

4: while (SAT(ψ)) do

5: τ := ψ.model (discarding the selection variables)

6: if (SAT(φ|τ)) then

7: τ ′ := SelectMinimalClauses(φ, ψ)

8: ϕ := RemoveSubsumedClauses(φ|τ ′ , s-table)

9: prob := max{prob, ComputeWeight(

R

Y.ϕ)}

10: CS :=
∨
C∈ϕ
¬sC

11: CL := DiscardLiterals(φ,CS, prob)

12: else

13: CL := MinimalConflicting(φ, τ)

14: end if

15: ψ := ψ ∧ CL

16: end while

17: return prob

98

doi: 10.6342/NTU202101397

6.2. Clause-containment learning for E-MAJSAT

less clauses are selected, we can safely assert pure X variables without missing the

optimal solution.

The selection relation is used to select different assignments τ over X. If φ|τ is

satisfiable, a weighted model counter is called to compute the conditional satisfy-

ing probability Pr[

R

Y.φ|τ]. The blocking clause CL derived from the containment-

learning technique is then conjoined with ψ to prevent clauses in φ|τ from being

simultaneously selected again.

On the other hand, suppose φ|τ is unsatisfiable. We can deduce a conjunction

of literals from τ responsible for the conflict by using a SAT solver to analyze

the conflict [33, 34]. In general, the conjunction of literals may not be minimal,

meaning that some literals can be discarded and the conflict remains unaffected.

The subroutine MinimalConflicting makes the conjunction of literals responsible

for the conflict minimal as follows. For each literal l in the conjunction, temporarily

drop l and check whether φ(X, Y) is still unsatisfiable. If it is unsatisfiable, discard

l; otherwise, keep l in the conjunction. Repeating the above process for every literal

makes the conjunction minimal. Complementing the minimal conjunction of literals

yields a learnt clause, which is then conjoined with the selection relation to block

assignments that make φ unsatisfiable.

When the selection relation becomes unsatisfiable, it indicates that the space

spanned by variables X has been completely searched. The algorithm will return the

encountered maximum conditional satisfying probability, which equals the satisfying

99

doi: 10.6342/NTU202101397

6.2. Clause-containment learning for E-MAJSAT

Table 6.1: Solving process of Alg. 5 on Example 6.2

Assignment Selected Clauses Pr[Φ|τ] Learnt Clause LB

τ1 = ¬e1¬e2¬e3 {C1, C2} 0.75 (¬s1 ∨ ¬s2) 0.75

τ2 = ¬e1e2¬e3 {C1} 0.75 (¬s1) 0.75

τ3 = e1e2¬e3 {C4} 0.5 (¬s4) 0.75

τ4 = e1e2e3 {C3} 0.75 (¬s3) 0.75

τ5 = e1¬e2e3 {} 1 () 1

probability of the input E-MAJSAT formula.

Example 6.2. Continuing Example 6.1, we show how Alg. 5 (without the clause-

strengthening heuristics) solves the E-MAJSAT instance

Φ = ∃e1,∃e2,∃e3,

R0.5r1,

R0.5r2,

R0.5r3.φ.

The solving process is summarized in Table 6.1. We first explore τ1 = ¬e1¬e2¬e3,

which selects C1 and C2. The algorithm derives Pr[

R0.5r1,

R0.5r2,

R0.5r3.φ|τ1] = 0.75

by invoking a weighted model counter in line 9. The learnt clause CL = (¬s1 ∨¬s2)

is conjoined with ψ to prevent C1 and C2 from being selected simultaneously again.

Suppose the second explored assignment τ2 is ¬e1e2¬e3, which selects C1. The

weighted model counter returns Pr[

R0.5r1,

R0.5r2,

R0.5r3.φ|τ2] = 0.75, and the learnt

clause CL = (¬s1) is conjoined with ψ to prevent C1 from being selected again.

Let the third tried assignment τ3 be e1e2¬e3, which selects C4. The weighted model

counter gives Pr[

R0.5r1,

R0.5r2,

R0.5r3.φ|τ3] = 0.5, and the learnt clause CL = (¬s4) is

100

doi: 10.6342/NTU202101397

6.2. Clause-containment learning for E-MAJSAT

conjoined with ψ to prevent C4 from being selected again.

Let the fourth tried assignment τ4 be e1e2e3, which selects C3. The conditional

satisfying probability Pr[

R0.5r1,

R0.5r2,

R0.5r3.φ|τ4] equals 0.75, and the learnt clause

CL = (¬s3) is conjoined with ψ to prevent C3 from being selected again.

Suppose the fifth tried assignment τ5 is e1¬e2e3, which deselects every clause,

making φ|τ5 = > and Pr[

R0.5r1,

R0.5r2,

R0.5r3.φ|τ5] = 1. Since there is no selected

clause, the learnt clause CL is empty, and the selection relation becomes unsatisfi-

able after being conjoined with an empty clause. The unsatisfiability of the selec-

tion relation reveals that the space spanned by variables X has been exhaustively

searched, and the algorithm returns the satisfying probability, which equals 1, of the

E-MAJSAT instance.

For approximate SSAT solving, suppose the procedure is forced to terminate right

after τ+
3 is explored. Although the space spanned by variables X has not been fully

searched yet, we can conclude that the satisfying probability is at least 0.75 because

τ1 or τ2 is a witness.

6.2.1 Clause-strengthening heuristics

The efficiency of Alg. 5 is greatly affected by the strength of the learnt clauses. We

introduce three heuristics, minimal clause selection, clause subsumption, and par-

tial assignment pruning, to strengthen the learnt clauses deduced by the proposed

101

doi: 10.6342/NTU202101397

6.2. Clause-containment learning for E-MAJSAT

learning technique. In Alg. 5, the clause-strengthening heuristics are executed by

subroutines SelectMinimalClauses (in line 7), RemoveSubsumedClauses (in line 8),

and DiscardLiterals (in line 11), to be detailed in the following three parts, re-

spectively.

Minimal clause selection

As discussed before, the selection relation ψ(X,S) is in charge of choosing an assign-

ment τ over variables X and thus selects a set of clauses from the matrix φ(X, Y).

However, the set of selected clauses may not be minimal, meaning that it is possible

for another assignment τ ′ to select a set of clauses contained in that selected by

τ , i.e., φ|τ ′ ⊂ φ|τ . Notice that the length of a learnt clause equals the number of

selected clauses. Therefore, selecting fewer clauses gives a stronger learnt clause, as

well as a higher conditional satisfying probability.

Starting from a set φ|τ of initially selected clauses, the first heuristic minimal

clause selection decreases the number of selected clauses by making the set of ini-

tially selected clauses minimal as follows. A learnt clause CS =
∨

C∈φ|τ
¬sC is conjoined

with the selection relation ψ(X,S) to avoid clauses in φ|τ from being selected si-

multaneously again. A SAT solver is invoked to solve ψ ∧ CS under an assumption

µ =
∧

C/∈φ|τ
¬sC . The assumption µ prevents originally deselected clauses from being

selected. If ψ ∧ CS under the assumption µ is satisfied by some assignment τ ′ over

X, the set of clauses selected by τ ′ must be a proper subset of that selected by τ .

102

doi: 10.6342/NTU202101397

6.2. Clause-containment learning for E-MAJSAT

On the other hand, if ψ ∧ CS under the assumption µ is unsatisfiable, then the set

of selected clauses is minimal. To make the set of initially selected clauses minimal,

the above operation is repeated until the selection relation becomes unsatisfiable.

The subroutine SelectMinimalClauses for the technique is described in Alg. 6.

The following example illustrates how this technique improves the solving efficiency.

Algorithm 6 Subroutine of Alg. 5: SelectMinimalClauses

Input: The matrix φ(X, Y) and selection relation ψ(X,S)

Output: An assignment τ ′ that selects a minimal set of clauses from φ

1: repeat

2: τ ′ := ψ.model (discarding the selection variables)

3: CS :=
∨

C∈φ|τ ′
¬sC

4: ψ := ψ ∧ CS

5: µ :=
∧

C/∈φ|τ ′
¬sC

6: until (UNSAT(ψ|µ))

7: return τ ′

Example 6.3. Continue Example 6.2. The first tried assignment τ1 = ¬e1¬e2¬e3

selects C1 and C2. The set of selected clauses is made minimal as follows. The sub-

routine SelectMinimalClauses conjoins the selection relation with a learnt clause

(¬s1 ∨ ¬s2), which prevents clauses C1 and C2 from being simultaneously selected

again. The satisfiability of the selection relation ψ ∧ (¬s1 ∨ ¬s2) is tested under an

assumption ¬s3¬s4, which avoids the originally deselected clause C3 and C4 from

being selected. The formula is satisfied by the assignment τ2 = ¬e1e2¬e3, which only

103

doi: 10.6342/NTU202101397

6.2. Clause-containment learning for E-MAJSAT

selects C1. By repeating the above operation again, the assignment τ5 = e1¬e2e3

is found, since it selects no clause. The conditional satisfying probability under τ5,

which equals 1, is derived without invoking a weighted model counter. Compared

to 6.2 where five assignments over X were explored, the algorithm with the minimal

clause selection technique finds the optimal assignment from τ1 with two additional

SAT calls, thus greatly improves the computation efficiency.

Clause subsumption

The second heuristic, named clause subsumption, decreases the length of a learnt

clause via examining the subsumption relation among the selected clauses. Recall

that clause C1 subsumes clause C2 if every literal appears in C1 also appears in C2.

Consider a CNF formula C1 ∧ C2 with C2 subsumed by C1. It can be simplified to

C1 because C2 is implied by C1 due to the subsumption relation.

The subsumption relation among sub-clauses consisting of variables in Y is con-

structed as a lookup table by the subroutine BuildSubsumeTable. The subroutine

RemoveSubsumedClauses simplifies the set φ|τ of selected clauses by removing sub-

sumed clauses. A clause C is removed from the set φ|τ of selected clauses if CY is

subsumed by other selected sub-clauses. We emphasize that, without cofactoring φ

with the assignment τ , the original clauses may not have the subsumption relation.

Cofactoring φ with the assignment τ over variables in X induces the subsumption

relation between sub-clauses consisting of variables in Y .

104

doi: 10.6342/NTU202101397

6.2. Clause-containment learning for E-MAJSAT

The procedure RemoveSubsumedClauses for the technique is outlined in Alg. 7.

It takes a set of selected clauses and a lookup table of subsumption relation as

input, and removes every subsumed clause via subroutine CheckNotSubsumed. The

following example explains how the subsumption relation shortens a learnt clause.

Algorithm 7 Subroutine of Alg. 5: RemoveSubsumedClauses

Input: The selected clauses φ|τ and a subsumption table s-table

Output: A simplified clause set ϕ without subsumed clauses

1: ϕ := >

2: for (C ∈ φ|τ) do

3: if (CheckNotSubsumed(C, s-table)) then

4: ϕ := ϕ ∧ C

5: end if

6: end for

7: return ϕ

Example 6.4. Continue Example 6.2. Recall that the first tried assignment is

τ1 = ¬e1¬e2¬e3. It selects C1 and C2. Because CY
1 subsumes CY

2 , C2 is removed

from φ|τ1, yielding ϕ = C1. A weighted model counter computes Pr[

R0.5Y.ϕ] = 0.75,

and the learnt clause CL = (¬s1) is conjoined with ψ to prevent C1 from being

selected again. Compared to Example 6.2, with the help of clause subsumption, the

learnt clause (¬s1) deduced from τ1 is stronger than its counterpart (¬s1∨¬s2) in Ex-

ample 6.2, and therefore avoids a fruitless trail of the assignment τ2 = ¬e1e2¬e3.

105

doi: 10.6342/NTU202101397

6.2. Clause-containment learning for E-MAJSAT

Partial assignment pruning

To illustrate the third heuristic partial assignment pruning, we first take a closer

look at a learnt clause deduced by the proposed clause-containment learning. Given

a matrix φ(X, Y) and an assignment τ over X, a learnt clause is a disjunction of the

negated selection variables of the selected clauses. For each selected clause C, if the

selection variable sC is substituted by its definition sC ≡ ¬CX , the learnt clause CL

becomes a disjunction of the sub-clauses CX , i.e., CL =
∨

C∈φ|τ
CX .

For instance, in Example 6.2, the learnt clause deduced from the assignment

τ1 = ¬e1¬e2¬e3, which selects clauses C1 and C2, is (¬s1 ∨ ¬s2) = (e1 ∨ e2), and

the current maximum satisfying probability equals 0.75. This learnt clause blocks

two assignments, τ1 and ¬e1¬e2e3. The assignment ¬e1¬e2e3 is blocked because it

selects clauses C1, C2, and C4, and clauses C1 and C2 have been selected previously.

A learnt clause can be strengthened if some literal in the clause is discarded. In

the above example, the learnt clause (e1 ∨ e2) can be strengthened by discarding

literal e2. The resulted learnt clause (e1) blocks any assignment assigning e1 to ⊥.

To see why these assignments are blocked, observe that assigning e1 to ⊥ selects

clause C1. Although the set {C1} does not contain the set {C1, C2}, the conditional

satisfying probability is bounded from above by the probability of the sub-clause

(r1 ∨ r2), which equals 0.75. Since the current maximum satisfying probability

equals 0.75 already, it is fruitless to explore assignments whose conditional satisfying

106

doi: 10.6342/NTU202101397

6.2. Clause-containment learning for E-MAJSAT

probabilities are no greater than 0.75. Therefore, e1 is forced to be >.

On the other hand, literal e1 cannot be discarded from the learnt clause (e1∨e2).

If e1 is discarded, the resulted learnt clause (e2) blocks any assignment assigning e2

to ⊥. However, assigning e2 to ⊥ selects no clause, and hence the upper bound of

the conditional satisfying probability equals 1. Since 1 is greater than the current

maximum satisfying probability 0.75, we have to explore assignments that map e2

to ⊥. In fact, there exists an assignment e1¬e2¬e3 whose conditional satisfying

probability equals 1, greater than the current maximum satisfying probability. As

a result, e1 cannot be discarded.

From the above illustration, we observe that a learnt clause can be strengthened

as follows. First, temporarily discard some literal l from a learnt clause. Second,

invoke a weighted model counter to compute the conditional satisfying probability

contributed by the selected clauses. Third, compare the probability to the current

maximum satisfying probability. If the probability is no greater, discard literal l;

otherwise, keep l in the learnt clause. Fourth, repeat the above steps for other

literals.

The subroutine DiscardLiterals for the technique to discard literals from a

learnt clause is outlined in Alg. 8. It substitutes selection variables in a learnt

clause CS by their definitions in line 1. Then it iterates through each literal l ∈ CL

and invokes a weighted model counter to check whether literal l can be discarded

in lines 2 to 5. Notice that the current maximum satisfying probability is not

107

doi: 10.6342/NTU202101397

6.2. Clause-containment learning for E-MAJSAT

updated by the value obtained by weighted model counting, because the value only

reflects an upper bound for satisfying probabilities under the partial assignment ν.

Algorithm 8 Subroutine of Alg. 5: DiscardLiterals

Input: The matrix φ, a learnt clause CS, and the current maximum prob

Output: A strengthened learnt clause CL

1: CL :=
∨

sC∈CS
CX

2: for (l ∈ CL) do

3: ν :=
∧

k∈CL\{l}
¬k

4: if (ComputeWeight(

R

Y.φ|ν) ≤ prob) then

5: CL := CL \ {l}

6: end if

7: end for

8: return CL

Example 6.5. Continue Example 6.2. As discussed above, the learnt clause (e1∨e2)

deduced from the assignment τ1 = ¬e1¬e2¬e3 is strengthen to (e1) by the partial

assignment pruning technique, and thus prevents a fruitless trail of the assignment

τ2 = ¬e1e2¬e3.

To summarize, the above three clause-strengthening heuristics are designed based

on different reasoning strategies: the minimal clause selection technique strengthens

the learnt clause by invoking additional SAT calls to solve the selection relation to

select a minimal set of clauses; the clause subsumption technique builds a lookup

table to record the subsumption relation and removes subsumed clauses; the partial

108

doi: 10.6342/NTU202101397

6.2. Clause-containment learning for E-MAJSAT

assignment pruning technique utilizes the current maximum conditional satisfying

probability, and invokes extra calls to a weighted model counter to test whether

it is feasible to discard some literal in a learnt clause. Benefiting from the three

clause-strengthening heuristics, the efficiency of the proposed algorithm is improved

over certain formulas, as will be shown in our experiments.

We emphasize two more strengths of the proposed algorithm. First, during the

computation, the proposed algorithm keeps deriving lower bounds for the satisfying

probability, and the bounds gradually converge to the final answer. Therefore, in

contrast to previous DPLL-based methods [73–75], the proposed algorithm can be

easily modified to solve approximate SSAT by returning the greatest encountered

lower bound upon timeout, as explained in Example 6.2. Second, the proposed

algorithm is efficient in memory usage, since it stores the learnt information com-

pactly via selection variables, and the weighted model counting is invoked on selected

clauses, whose sizes are typically much smaller than that of the original matrix.

6.2.2 Implementation details

We discuss some details about our implementation of the proposed algorithm. Alg. 5

involves satisfiability testing and weighted model counting. In principle, any SAT

solver and exact weighted model counter can be plugged into the procedure. There-

fore, Alg. 5 may benefit directly from the advancement of SAT solving and model

counting.

109

doi: 10.6342/NTU202101397

6.2. Clause-containment learning for E-MAJSAT

Specifically in our implementation, we adopt Minisat-2.2 [33] for SAT solv-

ing. We experimented with Cachet [101, 102] for weighted model counting, but the

overall performance was not satisfactory. Because the clauses selected by different

assignments typically share a portion of identical sub-formulas, the results of these

sub-formulas should be cached to avoid repeated computations. Ideally, this im-

provement can be achieved by tightly integrating Cachet into our implementation,

instead of treating it as a black box. However, we resort to binary decision diagram

(BDD) for our weighted model counting to achieve the formula caching effect.

The selected clauses in a formula are first transformed into a two-level circuit

by or-ing literals in each clause and and-ing the outputs of each or gate. A BDD

is then constructed based on the resultant circuit. Weighted model counting of the

original formula is done by traversing the BDD [27]. We use the well-developed

BDD package CUDD [107], which caches BDD nodes during building BDDs for differ-

ent formulas. Thus the formula caching effect as well as garbage collection, which

removes unreferenced nodes, is automatically achieved by CUDD.

Our implementation was integrated in the ABC [11] environment, which provides

all the facilities including SAT solving, circuit construction, and BDD computation

mentioned above.

110

doi: 10.6342/NTU202101397

6.3. Evaluation

6.3 Evaluation

We evaluated the proposed Alg. 5 against the state-of-the-art DPLL-based SSAT

solver DC-SSAT [73] over both random k-CNF and application formulas. The pro-

posed algorithm is implemented in the C++ language inside the ABC [11] environment.

The SAT solver MiniSat-2.2 [33] is used to answer satisfiability queries. For weighted

model counting, we tried Cachet [101, 102], but the overall performance was not sat-

isfactory. Instead, we resorted to a well-developed BDD package CUDD [107]. Weight

computation of a formula is fulfilled via a classic approach [27] that traverses the

BDD of a formula and computes the satisfying probabilities of the BDD nodes. Our

prototyping implementation1 is named erSSAT. A bare version of erSSAT without

the clause-strengthening heuristics is called erSSAT-b in the experiments. We used

commit 2ff8e74 of branch master in the experiments.

6.3.1 Benchmark set

The SSAT instances in the evaluation are hosted in a publicly available database2.

We used commit ea9fbae of branch master in the experiments.

1Available at: https://github.com/NTU-ALComLab/ssatABC
2Available at: https://github.com/NTU-ALComLab/ssat-benchmarks

111

https://github.com/NTU-ALComLab/ssatABC
https://github.com/NTU-ALComLab/ssat-benchmarks

doi: 10.6342/NTU202101397

6.3. Evaluation

Random k-CNF formulas

We generated random k-CNF formulas by CNFgen [57]. A collection of 700 formulas

were generated with k, i.e., the number of literals in a clause, taking values from

{3, 4, 5, 6, 7, 8, 9}, the number of variables taking values from {10, 20, 30, 40, 50}, and

clause-to-variable ratio taking values from {k−1, k, k+1, k+2}. Five formulas were

sampled for each parameter combination. To convert the propositional formulas into

E-MAJSAT formulas, the first half of the variables are existentially quantified, and

the rest are randomly quantified with probability 0.37.

Application formulas

Table 6.2: The families of the application formulas

Family Description Number

Toilet-A Adapted from exist-forall-exist QBFs [88] 77

Conformant Adapted from exist-forall-exist QBFs [88] 24

Sand-Castle A probabilistic planning problem [74] 25

Max-Count Adapted from maximum model counting [37] 26

MPEC Maximum probabilistic equivalence checking 60

We collected five families of application formulas for evaluation. Their descrip-

tions and the numbers of the instances in each family are summarized in Table 6.2.

The first two families, Toilet-A and Conformant, were adapted from exist-forall-exist

112

doi: 10.6342/NTU202101397

6.3. Evaluation

QBFs [88]. We converted the QBFs into exist-random-exist quantified SSAT formu-

las by replacing their universal quantifiers with randomized ones with probabilities

0.5. The third family Sand-Castle is a probabilistic conformant planning domain.

The problem can be encoded as E-MAJSAT formulas [74]. The family Max-Count

models the problems of maximum satisfiability, quantitative information flow, and

program synthesis with maximum model counting [37]. We represented the max-

imum model counting instances as E-MAJSAT formulas. The last family MPEC

consists of formulas that analyze the maximum probability of a probabilistic circuit

to produce erroneous outputs, as discussed in Chapter 4.

6.3.2 Experimental setup

Our experiments were performed on a machine with one 2.2 GHz CPU (Intel Xeon

Silver 4210) with 40 processing units and 134 616 MB of RAM. The operating sys-

tem was Ubuntu 20.04 (64 bit), running Linux 5.4. The programs were compiled

with g++ 9.3.0. Each SSAT-solving task was limited to a CPU core, a CPU time

of 15 min, and a memory usage of 15 GB. To achieve reliable benchmarking, we used

a benchmarking framework BenchExec3 [9], and assumed the maximum measure-

ment error for run-times is 1 %, which corresponds to 2 significant digits.

3Available at: https://github.com/sosy-lab/benchexec

113

https://github.com/sosy-lab/benchexec

doi: 10.6342/NTU202101397

6.3. Evaluation

6.3.3 Results

Random k-CNF formulas

Fig. 6.1 shows the quantile plots regarding CPU time and memory usage of the SSAT

instances derived from the random k-CNF formulas. A data point (x, y) in a quantile

plot indicates that there are x formulas processed by the respective algorithm within

a resource constraint of y. In Fig. 6.1a, we observe that erSSAT solved a similar

amount of formulas as DC-SSAT did. Moreover, the clause-strengthening heuristics

improve the performance of erSSAT a lot, as can be seen from the huge difference

between erSSAT and erSSAT-b. On the other hand, Fig. 6.1b shows that DC-SSAT

used much more memory than erSSAT. This can be attributed to the subformula

caching of DC-SSAT. Instead, erSSAT only builds BDDs for cofactored formulas,

which confined its memory footprint.

Application formulas

The solving results of the application formulas are summarized in Table 6.3. For

each compared approach, the numbers of its exactly solved formulas, timeouts, out

of memory, and other inconclusive situations are reported. To study the solving

performance regarding different kinds of formulas, we further report the numbers of

exactly solved formulas per family. Observe that DC-SSAT exactly solved the most

formulas. Its advantage mainly comes from family Sand-Castle, where it solved 22

114

doi: 10.6342/NTU202101397

6.3. Evaluation

0 200 400 600
10−3

10−2

10−1

100

101

102

103

n-th fastest result

T
im

e
(s
)

DC-SSAT
erSSAT-b
erSSAT

(a) CPU time

0 200 400 600
105

106

107

108

109

1010

n-th smallest result

M
em

or
y
(B

)

DC-SSAT
erSSAT-b
erSSAT

(b) Memory usage

Figure 6.1: Quantile plots of random k-CNF formulas

115

doi: 10.6342/NTU202101397

6.3. Evaluation

Table 6.3: Summary of the results for 212 application formulas

Algorithm DC-SSAT erSSAT erSSAT-b

Solved formulas 78 59 65

Toilet-A 44 38 46

Conformant 1 2 1

Sand-Castle 22 13 14

Max-Count 3 3 1

MPEC 8 3 3

Timeouts 85 141 129

Out of memory 38 0 0

Other inconclusive 11 12 18

formulas, but erSSAT and erSSAT-b only solved 13 and 14 formulas, respectively.

We will analyze why the proposed clause-containment learning is not suitable for

this family later. To our surprise, the proposed clause-strengthening heuristics seem

not very useful on the evaluated application formulas. They even worsened the

performance over formulas from the family Toilet-A. While erSSAT and erSSAT-b

suffered from more timeouts than DC-SSAT, they did not run out of memory for any

formula. Instead, DC-SSAT tends to consume a lot of memory, because it memorizes

many subformulas.

Fig. 6.2 shows the quantile plots of the application SSAT formulas. We can

116

doi: 10.6342/NTU202101397

6.3. Evaluation

0 50 100 150 200
10−3

10−2

10−1

100

101

102

103

n-th fastest result

T
im

e
(s
)

DC-SSAT
erSSAT-b
erSSAT

(a) CPU time

0 50 100 150 200
105

106

107

108

109

1010

n-th smallest result

M
em

or
y
(B

)

DC-SSAT
erSSAT-b
erSSAT

(b) Memory usage

Figure 6.2: Quantile plots of application formulas

117

doi: 10.6342/NTU202101397

6.3. Evaluation

see that the clause-strengthening heuristics affected not only the effectiveness of

erSSAT but also its efficiency from Fig. 6.2a. This phenomenon indicates that the

additional effort spent to strengthen a learnt clause is not worthy. The reason behind

this phenomenon will be inspected in the following.

To further examine the suitability of the clause-strengthening heuristics, we

demonstrate the scatter plots with erSSAT in y-axis and compared approaches in

x-axis in Fig. 6.3. A data point (x, y) in the plots indicates that there is a formula

processed by both erSSAT and a compared approach, while erSSAT took a CPU time

of y seconds and the other approach took a CPU time of x seconds. From Fig. 6.3a,

we find that the clause-strengthening heuristics did improve the solving of some for-

mulas, but more often they were an overhead to erSSAT-b. Fig. 6.3b also shows that

DC-SSAT was more efficient to exactly solve formulas than erSSAT over the evaluated

application formulas.

Clause-containment learning over the Sand-Castle problem

As erSSAT and erSSAT-b did not solve formulas from the probabilistic planning

domain Sand-Castle quite well, we look into the problem and discuss our findings

here. The Sand-Castle problem [74] describes an agent who wants to build a sand

castle on a beach. The agent has two actions to choose from: digging a moat

or erecting a castle. A moat protects a castle from the water and increases the

probability to successfully build a castle. The agent must take a unique action at

118

doi: 10.6342/NTU202101397

6.3. Evaluation

10−2 10−1 100 101 102 103
10−2

10−1

100

101

102

103

(a) erSSAT-b

10−3 10−2 10−1 100 101 102 103
10−3

10−2

10−1

100

101

102

103

(b) DC-SSAT

Figure 6.3: Run-time scatter plots of application formulas with erSSAT in y-axis

and compared approaches in x-axis

119

doi: 10.6342/NTU202101397

6.3. Evaluation

every stage. Under the settings of conformant planning, the agent must decide its

strategy beforehand and does not have access to internal states (whether a moat

has been digged or a castle has been erected) during the execution. Given a finite

number of stages, the problem asks to compute a strategy to maximize the chance of

successfully building a castle at the last stage. The agent’s actions are encoded with

existentially quantified variables, and the nondeterminism in the state-transition

mechanism is encoded with randomly quantified variables.

A formula that encodes the Sand-Castle problem with n stages has the form:

φ =
n∧
i=1

φ
(i)
d ∧ φ(i)

e , (6.1)

where φd and φe are sets of clauses used to represent the state-transition mechanism

when the agent chooses to dig a moat or erect a castle, respectively. As the state-

transition mechanism is the same for every stage except for the variables recording

the internal state, we use the superscripts to indicate the stage indices. We found

that the Sand-Castle problem has the following property: the clause set φ
(i)
d (resp.

φ
(i)
e) will be selected if and only if the agent chooses to dig a moat (resp. erect a

castle) at stage i. In other words, each strategy of the agent (i.e., an assignment to

the existentially quantified variables) will select a distinct set of clauses. Recall that

the proposed clause-containment principle aims at blocking assignments selecting a

superset of clauses that has been selected by a previously explored assignment. As a

result, a learnt clause constructed based on this principle can only block the current

assignment itself, which means that erSSAT-b degenerates to merely brute-force

120

doi: 10.6342/NTU202101397

6.3. Evaluation

search. This theoretic reasoning is confirmed by the solving statistics (visible from

the log files), which show that erSSAT-b invoked 2n−1 model-counting queries. For

erSSAT, the situation is worse due to partial assignment pruning, which invokes ad-

ditional model-counting queries to strengthen a learnt clause. From the log files, we

found that erSSAT invoked twice numbers of model-counting queries than erSSAT-b,

because it had an additional trial but always ended in vain.

On the other hand, recall that DC-SSAT is tailored to exploit the structural

characteristics of planning problems. The Sand-Castle formulas favors DC-SSAT, as

the subformulas are essentially the same across the stages. It is not surprising the

formula caching and divide-and-conquer method works well with these formulas.

Approximate solving

Recall that the proposed Alg. 5 solves an SSAT formula in a converging manner.

Instead of computing the exact satisfying probability at once, it keeps deriving lower

bounds of the satisfying probability of a formula. This characteristic integrates

exact and approximate solving into one approach. In the following, we study the

approximation ability of erSSAT. We choose families Conformant, Max-Count, and

MPEC for detailed investigation, because all of the compared approaches ran out

of CPU time or memory over most of their formulas.

Tables 6.4, 6.5, and 6.6 show the approximation results over the above three

121

doi: 10.6342/NTU202101397

6.3. Evaluation

families, respectively. For DC-SSAT, the CPU time and exact satisfying probability

are reported. For erSSAT and erSSAT-b, in addition to the CPU and exact satisfying

probability, the tightest lower bound and the time elapsed to derive the lower bound

are also shown in the tables. A formula is not shown in the tables if none of the

approaches can solve it or derive a non-trivial lower bound for it.

As can be observed from the tables, erSSAT was able to derive tight lower bounds

for formulas from these families, while DC-SSAT suffered from timeouts over most

of them. The approximation ability of erSSAT makes it useful for large formulas,

which cannot be exactly solved by the state-of-the-art approaches.

The above results on the random and application formulas suggest that:

• The proposed solver erSSAT achieves a similar performance as DC-SSAT in

terms of CPU time and outperforms DC-SSAT in terms of memory consumption

on random formulas.

• The proposed solver erSSAT is not as good as DC-SSAT at exactly solving the

application formulas, which can be attributed to the overhead caused by the

clause-strengthening heuristics.

• The proposed solver erSSAT is good at deriving tight lower bounds for large

formulas. This approximation ability is especially valuable when the size of a

formula is beyond the capability of the state-of-the-art exact solver.

122

doi: 10.6342/NTU202101397

6.3. Evaluation

To sum up, our experimental results demonstrate the unique value of the proposed

clause-containment learning.

123

doi: 10.6342/NTU202101397

6.3. Evaluation

Table 6.4: Results of solving the Conformant family

D
C
-
S
S
A
T

e
r
S
S
A
T

e
r
S
S
A
T
-
b

F
o
r
m
u
l
a

T
(s

)
P

r
T

(s
)

P
r

L
B

T
-L

B
(s

)
T

(s
)

P
r

L
B

T
-L

B
(s

)

b
lo

ck
s

en
c

2
b

3
se

r–
o
p

t-
9

–
–

–
–

4
.3

8
e−

1
2
0
0

–
–

3
.1

3
e−

1
7
7

b
lo

ck
s

en
c

2
b

4
se

r–
o
p

t-
2
6

–
–

–
–

4
.3

8
e−

1
2
9
0

–
–

4
.3

8
e−

1
2
5
0

cu
b

e
c3

se
r–

o
p

t-
6

1
7

1
.0

0
e+

0
1
.9

1
.0

0
e+

0
–

–
1
7

1
.0

0
e+

0
–

–

cu
b

e
c5

se
r—

1
4

–
–

–
–

1
.8

0
e−

1
2
8
0

–
–

1
.6

4
e−

1
4
3
0

cu
b

e
c5

se
r–

o
p

t-
1
5

–
–

–
–

1
.8

0
e−

1
2
2
0

–
–

4
.1

4
e−

1
7
2
0

cu
b

e
c7

se
r—

2
3

–
–

–
–

3
.3

8
e−

1
5
2
0

–
–

3
.3

8
e−

1
1
9
0

cu
b

e
c7

se
r–

o
p

t-
2
4

–
–

–
–

3
.4

4
e−

1
6
8
0

–
–

3
.3

8
e−

1
3
9
0

cu
b

e
c9

p
a
r—

1
0

–
–

–
–

2
.9

0
e−

1
2
1
0

–
–

2
.9

4
e−

1
4
2
0

cu
b

e
c9

p
a
r–

o
p

t-
1
1

–
–

–
–

2
.8

9
e−

1
2
2
0

–
–

2
.9

3
e−

1
8
7
0

em
p

ty
ro

o
m

e3
p

a
r–

o
p

t-
1
0

–
–

–
–

1
.2

5
e−

1
5
1
0

–
–

1
.5

6
e−

1
8
6
0

em
p

ty
ro

o
m

e3
se

r—
1
9

–
–

–
–

1
.8

8
e−

1
6
1
0

–
–

1
.2

5
e−

1
2
2
0

em
p

ty
ro

o
m

e3
se

r–
o
p

t-
2
0

–
–

–
–

9
.3

8
e−

2
2
2
0

–
–

1
.4

1
e−

1
7
0
0

em
p

ty
ro

o
m

e4
p

a
r—

2
1

–
–

–
–

3
.9

1
e−

3
1
6
0

–
–

1
.9

5
e−

2
3
6
0

em
p

ty
ro

o
m

e4
p

a
r–

o
p

t-
2
2

–
–

–
–

3
.9

1
e−

3
2
6
0

–
–

1
.5

6
e−

2
2
1
0

em
p

ty
ro

o
m

e4
se

r–
o
p

t-
4
4

–
–

–
–

3
.9

1
e−

3
4
6
0

–
–

1
.5

6
e−

2
7
1
0

ri
n

g
r3

se
r–

o
p

t-
8

–
–

4
7
0

1
.0

0
e+

0
–

–
–

–
7
.8

9
e−

1
1
2
0

ri
n

g
r4

se
r–

o
p

t-
1
1

–
–

–
–

4
.9

6
e−

1
5
2
0

–
–

7
.1

9
e−

1
4
9
0

124

doi: 10.6342/NTU202101397

6.3. Evaluation

Table 6.5: Results of solving the Max-Count family

D
C
-
S
S
A
T

e
r
S
S
A
T

e
r
S
S
A
T
-
b

F
o
r
m
u
l
a

T
(s

)
P

r
T

(s
)

P
r

L
B

T
-L

B
(s

)
T

(s
)

P
r

L
B

T
-L

B
(s

)

M
a
x
S

A
T

-k
el

le
r4

-1
2
1
2
.c

lq
.w

cn
f

–
–

0
.1

7
9
.7

6
e−

1
–

–
–

–
9
.6

5
e−

1
0
.1

2

Q
IF

-C
V

E
-2

0
0
7
-2

8
7
5

–
–

2
1
.0

0
e+

0
–

–
–

–
9
.5

4
e−

7
5
.2

Q
IF

-b
a
ck

d
o
o
r-

2
x
1
6
-8

0
.0

1
2

1
.5

3
e−

5
–

–
5
.9

6
e−

8
0
.1

6
–

–
5
.9

6
e−

8
0
.1

5

Q
IF

-b
a
ck

d
o
o
r-

3
2
-2

4
0
.0

0
9
6

1
.0

0
e+

0
0
.0

5
4

1
.0

0
e+

0
–

–
0
.0

5
2

1
.0

0
e+

0
–

–

Q
IF

-b
in

-s
ea

rc
h

-1
6

–
–

–
–

1
.9

5
e−

3
1
1
0

–
–

1
.2

2
e−

4
1
4
0

Q
IF

-r
ev

er
se

–
–

–
–

5
.9

6
e−

7
5
5
0

–
–

9
.5

4
e−

7
4
3
0

Q
IF

-r
ev

er
se

2
–

–
–

–
2
.9

8
e−

7
2
0
0

–
–

9
.5

4
e−

7
5
4
0

S
y
G

u
S

-s
ig

n
5
3
0

1
.0

0
e+

0
–

–
–

–
–

–
–

–

125

doi: 10.6342/NTU202101397

6.3. Evaluation

Table 6.6: Results of solving the MPEC family

D
C
-
S
S
A
T

e
r
S
S
A
T

e
r
S
S
A
T
-
b

F
o
r
m
u
l
a

T
(s

)
P

r
T

(s
)

P
r

L
B

T
-L

B
(s

)
T

(s
)

P
r

L
B

T
-L

B
(s

)

c1
3
5
5
-0

.0
1

–
–

–
–

4
.1

4
e−

1
6
8
0

–
–

6
.5

6
e−

1
4
1

c1
9
0
8
-0

.0
1

4
8

4
.1

4
e−

1
–

–
3
.1

8
e−

1
5
9
0

–
–

4
.1

4
e−

1
2
2

c2
6
7
0
-0

.0
1

–
–

–
–

4
.8

7
e−

1
1
5
0

–
–

5
.5

1
e−

1
5
.7

c3
5
4
0
-0

.0
1

–
–

–
–

–
–

–
–

5
.5

1
e−

1
7
2

c4
3
2
-0

.0
1

–
–

–
–

2
.3

4
e−

1
1
4
0

–
–

2
.3

4
e−

1
2
.9

c4
9
9
-0

.0
1

–
–

–
–

4
.1

4
e−

1
3
3

–
–

4
.1

4
e−

1
0
.3

8

c8
8
0
-0

.0
1

–
–

–
–

3
.3

0
e−

1
4
.1

–
–

3
.3

0
e−

1
6
.2

ca
v
lc

-0
.0

1
0
.1

5
5
.4

2
e−

1
–

–
–

–
–

–
–

–

ct
rl

-0
.0

1
0
.0

0
8
9

2
.3

4
e−

1
0
.0

7
2
.3

4
e−

1
–

–
0
.0

9
2
.3

4
e−

1
–

–

ct
rl

-0
.1

0
0
.0

5
8

8
.6

5
e−

1
–

–
–

–
–

–
–

–

d
ec

-0
.0

1
0
.0

0
8
5

6
.5

6
e−

1
0
.0

4
3

6
.5

6
e−

1
–

–
0
.0

4
6

6
.5

6
e−

1
–

–

d
ec

-0
.1

0
1
8
0

9
.8

8
e−

1
–

–
–

–
–

–
–

–

i2
c-

0
.0

1
–

–
–

–
–

–
–

–
7
.2

1
e−

1
1
8
0

in
t2

fl
o
a
t-

0
.0

1
0
.0

1
2

2
.3

4
e−

1
1
.3

2
.3

4
e−

1
–

–
0
.4

4
2
.3

4
e−

1
–

–

in
t2

fl
o
a
t-

0
.1

0
4
.2

9
.0

1
e−

1
–

–
–

–
–

–
–

–

p
ri

o
ri

ty
-0

.0
1

–
–

–
–

4
.4

5
e−

1
1
4
0

–
–

5
.8

9
e−

1
5
6
0

ro
u

te
r-

0
.0

1
–

–
–

–
1
.2

5
e−

1
0
.3

6
–

–
1
.2

5
e−

1
0
.3

8

126

doi: 10.6342/NTU202101397

Chapter 7

Dependency SSAT

In this chapter, we lift SSAT to the NEXPTIME-complete complexity class by

formulating dependency SSAT (DSSAT). Most content in this chapter is based on

our conference paper [61] published at AAAI ’21.

7.1 Preliminaries

7.1.1 Dependency quantified Boolean formula

DQBF is formulated as multiple-person alternation by Peterson and Reif [93]. In

contrast to the linearly ordered quantification used in QBF, i.e., an existentially

quantified variable depends on all of its preceding universally quantified variables,

the quantification structure in DQBF is extended with Henkin quantifiers, where

127

doi: 10.6342/NTU202101397

7.1. Preliminaries

the dependency of an existentially quantified variable is explicitly specified.

A DQBF Φ over a set V = {x1, . . . , xn, y1, . . . , ym} of variables is of the form:

Φ = ∀x1, . . . ,∀xn,∃y1(Dy1), . . . ,∃ym(Dym).φ(x1, . . . , xn, y1, . . . , ym),

where each Dyj ⊆ {x1, . . . , xn} denotes the set of universally quantified variables

that yj depends on, and Boolean formula φ over V is quantifier-free. We denote the

set {x1, . . . , xn} (resp. {y1, . . . , ym}) of universally (resp. existentially) quantified

variables of Φ by V ∀Φ (resp. V ∃Φ).

A DQBF Φ is satisfiable if for each variable yj, there exists a Boolean function

fj : A(Dyj) 7→ B, such that matrix φ becomes a tautology over V ∀Φ after substituting

variables in V ∃Φ with their respective Boolean functions. The set F = {f1, . . . , fm}

of Boolean functions is called a set of Skolem functions for Φ. In other words, Φ is

satisfied by F if the following QBF valuates to >:

∀x1, . . . ,∀xn.φ(x1, . . . , xn, f1, . . . , fm), (7.1)

where φ(x1, . . . , xn, f1, . . . , fm) represents the formula obtained by substituting exis-

tentially quantified variables in φ with their respective Skolem functions. We extend

the notation for cofactors and denote φ(x1, . . . , xn, f1, . . . , fm) by φ|F . The satisfia-

bility problem of DQBF is NEXPTIME-complete [94].

128

doi: 10.6342/NTU202101397

7.1. Preliminaries

7.1.2 Decentralized POMDP

Dec-POMDP is a formalism for multi-agent systems under uncertainty and with

partial information. Its computational complexity is NEXPTIME-complete [8]. In

the following, we briefly review the definition, optimality criteria, and value function

of Dec-POMDP from the literature [90].

A Dec-POMDP is specified by a tuple M = (I, S, {Ai}, T, ρ, {Oi},Ω,∆0, h),

where I = {1, . . . , n} is a finite set of n agents, S is a finite set of states, Ai is a

finite set of actions of Agent i, T : S × (A1 × · · · × An) × S 7→ [0, 1] is a transition

distribution function with T (s,~a, s′) = Pr[s′|s,~a], the probability to transit to state

s′ from state s after taking actions ~a, ρ : S×(A1×· · ·×An) 7→ R is a reward function

with ρ(s,~a) giving the reward for being in state s and taking actions ~a, Oi is a finite

set of observations for Agent i, Ω : S × (A1× · · · ×An)× (O1× · · · ×On) 7→ [0, 1] is

an observation distribution function with Ω(s′,~a, ~o) = Pr[~o|s′,~a], the probability to

receive observation ~o after taking actions ~a and transiting to state s′, ∆0 : S 7→ [0, 1]

is an initial state distribution function with ∆0(s) = Pr[s0 ≡ s], the probability for

the initial state s0 being state s, and h is a planning horizon, which we assume finite

in this work.

Example 7.1. An example Dec-POMDP M with two agents and two states sp, sq

is shown in Fig. 7.1. The goal of the agents is to make a correct agreement on the

current state. They have an action set A1 = A2 = {ap, aq}, where ap (resp. aq) is

used to guess that the current state is sp (resp. sq).

129

doi: 10.6342/NTU202101397

7.1. Preliminaries

sp sq

0.5
0.5

0.5

0.5

(ap, ap, 1)

(ap, ap, 1)

(aq, A2,−1)
(A1, aq,−1)

(aq, aq, 1)

(aq, aq, 1)

(ap, A2,−1)
(A1, ap,−1)

Figure 7.1: A two-agent Dec-POMDP example

Under the assumption of partial observation, the agents cannot access the current

state of M. Instead, they have two different observations op and oq. We assume

that an agent will receive op (resp. oq) after the current state transits to sp (resp.

sq) with probability Ω(sp, op) (resp. Ω(sq, oq)).

If both agents guess correctly, they will receive a reward of 1, and M will transit

to a next state with equal probability. In the state-transition graph, observe that in

state sp (resp. sq), there are two outgoing edges labeled with a tuple (ap, ap, 1) (resp.

(aq, aq, 1)), which describes the agents’ actions and the reward. These two edges will

be taken with probability 0.5 if the preconditions are met.

On the other hand, if one of the agents makes a wrong guess, they will receive a

reward of −1, and M will stay in the current state. In the state-transition graph,

observe that in state sp (resp. sq), there is a self-loop labeled with tuples (aq, A2,−1)

and (A1, aq,−1) (resp. (ap, A2,−1) and (A1, ap,−1)). These tuples indicate that if

one of the agent makes a wrong guess, they will receive a reward of −1 regardless of

130

doi: 10.6342/NTU202101397

7.1. Preliminaries

the guess of the other agent.

Note that the agents cannot communicate with each other. Their actions must

be solely based on their own observations.

Given a Dec-POMDPM, we aim at maximizing the expected cumulative reward

E[
∑h−1

t=0 ρ(st,~at)] through searching an optimal joint policy for a team of agents.

Specifically, a policy πi of Agent i is a mapping from the agent’s observation history,

i.e., a sequence of observations oti = o0
i , . . . , o

t
i received by Agent i, to an action

at+1
i ∈ Ai. A joint policy for the team of agents ~π = (π1, . . . , πn) maps the agents’

joint observation history ~ot = (ot1, . . . , o
t
n) to actions ~at+1 = (π1(ot1), . . . , πn(otn)). We

shall focus on deterministic policies only, as it is shown that every Dec-POMDP

with a finite planning horizon has a deterministic optimal joint policy [91].

The quality of a joint policy ~π is measured by its expected cumulative reward.

The value of a joint policy is hence defined to be E[
∑h−1

t=0 ρ(st,~at)|∆0, ~π]. The value

function V π can be computed in a recursive manner, where for t = h− 1,

V π(sh−1,~oh−2) = ρ(sh−1, ~π(~oh−2)),

and for t < h− 1,

V π(st,~ot−1) = ρ(st, ~π(~ot−1)) +
∑
st+1∈S

∑
~ot∈ ~O

Pr[st+1, ~ot|st, ~π(~ot−1)]V π(st+1,~ot). (7.2)

The probability Pr[st+1, ~ot|st, ~π(~ot−1)] is the product of the transition probability

T (st, ~π(~ot−1), st+1) and the observation probability Ω(st+1, ~π(~ot−1), ~ot). Eq. (7.2) is

131

doi: 10.6342/NTU202101397

7.2. Lifting SSAT to NEXPTIME-completeness

also called the Bellman equation of Dec-POMDP. Denoting the empty observation

history at the first stage (i.e., t = 0) with the symbol ~o−1, the value V (~π) of a joint

policy equals
∑

s0∈S ∆0(s0)V π(s0,~o−1).

7.2 Lifting SSAT to NEXPTIME-completeness

7.2.1 Formulation

In the following, we extend DQBF to its stochastic variant, named dependency

stochastic Boolean satisfiability (DSSAT).

A DSSAT formula Φ over V = {x1, . . . , xn, y1, . . . , ym} is of the form:

Rp1x1, . . . ,

Rpnxn, ∃y1(Dy1), . . . ,∃ym(Dym).φ(x1, . . . , xn, y1, . . . , ym), (7.3)

where each Dyj ⊆ {x1, . . . , xn} denotes the set of variables that variable yj depends

on, and Boolean formula φ over V is quantifier-free. We denote the set {x1, . . . , xn}

(resp. {y1, . . . , ym}) of randomly (resp. existentially) quantified variables of Φ by

V

R

Φ (resp. V ∃Φ).

Given a DSSAT formula Φ and a set F = {fj : A(Dyj) 7→ B | j = 1, . . . ,m}

of Skolem functions, the satisfying probability Pr[Φ|F] of Φ with respect to F is

defined as follows:

Pr[Φ|F] = Pr[

Rp1x1, . . . ,

Rpnxn.φ|F], (7.4)

132

doi: 10.6342/NTU202101397

7.2. Lifting SSAT to NEXPTIME-completeness

where φ|F denotes the formula obtained by substituting existentially quantified vari-

ables in φ with their respective Skolem functions, as defined in Section 7.1.1. In

other words, the satisfying probability of Φ with respect to F equals the satisfying

probability of the SSAT formula

Rp1x1, . . . ,

Rpnxn.φ|F .

Example 7.2. Given a DSSAT formula Φ =

R0.5x1,

R0.5x2,∃y1({x1}), ∃y2({x2}).φ

and φ = (x1 ∨ ¬y1)(¬x1 ∨ y1)(¬x1 ∨ ¬x2 ∨ y2)(x1 ∨ ¬y2)(x2 ∨ ¬y2), the satis-

fying probability of Φ with respect to F = {f1(x1) = x1, f2(x2) = x2} equals

Pr[

R0.5x1,

R0.5x2.φ|F] = Pr[

R0.5x1,

R0.5x2.(x1 ∨ ¬x2)] = 0.75.

The decision version of DSSAT is stated as follows. Given a DSSAT formula Φ

and a threshold θ ∈ [0, 1], decide whether there exists a set F of Skolem functions

such that Pr[Φ|F] ≥ θ. On the other hand, the optimization version asks to find a

set of Skolem functions to maximize the satisfying probability of Φ.

The formulation of SSAT can be extended by incorporating universal quantifiers,

resulting in a unified framework named extended SSAT (XSSAT) [72], which sub-

sumes both QBF and SSAT. In the extended SSAT, besides the four rules discussed

in Section 3.2 to calculate the satisfying probability of an SSAT formula Φ, the

following rule is added: Pr[Φ] = min{Pr[Φ|¬x],Pr[Φ|x]}, if the outermost variable x

is universally quantified.

Similarly, an extended DSSAT (XDSSAT) formula Φ over a set of variables

133

doi: 10.6342/NTU202101397

7.2. Lifting SSAT to NEXPTIME-completeness

{x1, . . . , xn, y1, . . . , ym, z1, . . . , zl} is of the form:

Q1v1, . . . , Qn+lvn+l,∃y1(Dy1), . . . ,∃ym(Dym).φ, (7.5)

where Qivi equals either

Rpkxk or ∀zk for some k with vi 6= vj for i 6= j, and each

Dyj ⊆ {x1, . . . , xn, z1, . . . , zl} denotes the set of randomly and universally quantified

variables that variable yj depends on.

The satisfying probability of an XDSSAT formula Φ with respect to a set F =

{fj : A(Dyj) 7→ B | j = 1, . . . ,m} of Skolem functions, denoted by Pr[Φ|F], equals

the satisfying probability of the XSSAT formula Q1v1, . . . , Qn+lvn+l.φ|F . This sat-

isfiability definition subsumes those for DQBF (Eq. (7.1)) and DSSAT (Eq. (7.4)),

where the variables preceding the existential quantifiers in the prefixes are solely

universally or randomly quantified, respectively.

Note that in the above extension the Henkin-type quantifiers are only defined

for the existential variables. Although the extended formulation increases practical

expressive succinctness, the computational complexity is not changed as to be shown

in the next section.

7.2.2 Complexity proof

In the following, we show that the decision version of DSSAT is NEXPTIME-

complete.

Theorem 7.1. The decision version of DSSAT is NEXPTIME-complete.

134

doi: 10.6342/NTU202101397

7.2. Lifting SSAT to NEXPTIME-completeness

Proof. To show that DSSAT is NEXPTIME-complete, we have to show that it

belongs to the NEXPTIME complexity class and that it is NEXPTIME-hard.

First, to see why DSSAT belongs to the NEXPTIME complexity class, observe

that a Skolem function for an existentially quantified variable can be guessed and

constructed in nondeterministic exponential time with respect to the number of

randomly quantified variables. Given the guessed Skolem functions, the evaluation

of the matrix, summation of weights of satisfying assignments, and comparison

against the threshold θ can also be performed in exponential time. Overall, the

whole procedure is done in nondeterministic exponential time with respect to the

input size, and hence DSSAT belongs to the NEXPTIME complexity class.

Second, to see why DSSAT is NEXPTIME-hard, we reduce the NEXPTIME-

complete problem DQBF to DSSAT as follows. Given an arbitrary DQBF:

ΦQ = ∀x1, . . . ,∀xn,∃y1(Dy1), . . . ,∃ym(Dym).φ,

we construct a DSSAT formula:

ΦS =

R0.5x1, . . . ,

R0.5xn,∃y1(Dy1), . . . ,∃ym(Dym).φ

by changing every universal quantifier to a randomized quantifier with probability

0.5. The reduction can be done in polynomial time with respect to the size of ΦQ.

We will show that ΦQ is satisfiable if and only if there exists a set F of Skolem

functions such that Pr[ΦS|F] ≥ 1.

The “only if” direction: As ΦQ is satisfiable, there exists a set F of Skolem func-

135

doi: 10.6342/NTU202101397

7.3. Applications of DSSAT

tions such that substituting the existentially quantified variables with the respec-

tive Skolem functions makes φ a tautology over variables {x1, . . . , xn}. Therefore,

Pr[ΦS|F] = Pr[

R0.5x1, . . . ,

R0.5xn.>] = 1 ≥ 1.

The “if” direction: As there exists a set F of Skolem functions such that

Pr[ΦS|F] ≥ 1, after substituting the existentially quantified variables with the cor-

responding Skolem functions, each assignment τ ∈ A({x1, . . . , xn}) must satisfy φ,

i.e., φ becomes a tautology over variables {x1, . . . , xn}. Otherwise, the satisfying

probability Pr[ΦS|F] must be less than 1 as the weight 2−n of some unsatisfying

assignment is missing from the summation. Therefore, ΦQ is satisfiable due to the

existence of the set F . �

When DSSAT is extended with universal quantifiers, its complexity remains in

the NEXPTIME complexity class as the fifth rule of the satisfying probability cal-

culation does not incur any complexity overhead. Therefore the following corollary

is immediate.

Corollary 7.1.1. The decision problem of XDSSAT is NEXPTIME-complete.

7.3 Applications of DSSAT

In this section, we demonstrate two applications of DSSAT.

136

doi: 10.6342/NTU202101397

7.3. Applications of DSSAT

7.3.1 Analyzing probabilistic/approximate partial design

After formulating DSSAT and proving its NEXPTIME-completeness, we show its

application to the analysis of probabilistic design and approximate design. Specif-

ically, we consider the probabilistic version of the topologically constrained logic

synthesis problem [5, 106], or equivalently the partial design problem [39].

In the (deterministic) partial design problem, we are given a specification function

G(X) over primary input variables X and a partial design CF with black boxes to

be synthesized. The Boolean functions induced at the primary outputs of CF can be

described by F (X,T), where T corresponds to the variables of the black box outputs.

Each black box output ti is specified with its input variables (i.e., dependency set)

Di ⊆ X ∪ Y in CF , where Y represents the variables for intermediate gates in CF

referred to by the black boxes. The partial design problem aims at deriving the

black box functions {h1(D1), . . . , h|T |(D|T |)} such that substituting ti with hi in CF

makes the resultant circuit function equal G(X). The above partial design problem

can be encoded as a DQBF problem; moreover, the partial equivalence checking

problem is shown to be NEXPTIME-complete [39].

Specifically, the DQBF that encodes the partial equivalence checking problem is

of the form:

∀X, ∀Y, ∃T (D).(Y ≡ E(X))→ (F (X,T) ≡ G(X)), (7.6)

where D consists of (D1, . . . , D|T |), E corresponds to the defining functions of Y

137

doi: 10.6342/NTU202101397

7.3. Applications of DSSAT

F G

XZ

D1

z1t1

D2

z2 t2

Figure 7.2: A miter for the equivalence checking of probabilistic partial design

in CF , and the operator “≡” denotes element-wise equivalence between its two

operands.

The above partial design problem can be extended to its probabilistic variant,

which is illustrated by the circuit shown in Fig. 7.2. The probabilistic partial design

problem is the same as the deterministic partial design problem except that CF is a

distilled probabilistic design [60] with black boxes, whose functions at the primary

outputs can be described by F (X,Z, T), where Z represents the variables for the

auxiliary inputs that trigger errors in CF (including the errors of the black boxes)

and T corresponds to the variables of the black box outputs. Each black box output

ti is specified with its input variables (i.e., dependency set) Di ⊆ X∪Y in CF . When

ti is substituted with hi in CF , the function of the resultant circuit is required to be

138

doi: 10.6342/NTU202101397

7.3. Applications of DSSAT

sufficiently close to the specification with respect to some expected probability.

Theorem 7.2. The probabilistic partial design problem is NEXPTIME-complete.

Proof. To show that the probabilistic partial design problem is in the NEXPTIME

complexity class, we note that the black box functions can be guessed and validated

in time exponential to the number of black box inputs.

To show completeness in the NEXPTIME complexity class, we reduce the known

NEXPTIME-complete DSSAT problem to the probabilistic partial design problem,

similar to the construction used in the previous work [39]. Given a DSSAT instance,

it can be reduced to a probabilistic partial design instance in polynomial time as

follows. Without loss of generality, consider the DSSAT formula Eq. (7.3). We

create a probabilistic partial design instance by letting the specification G be a

tautology and letting CF be a probabilistic design with black boxes, which involves

primary inputs x1, . . . , xn and black box outputs y1, . . . , ym to compute the matrix

φ. The driving inputs of the black box output yj is specified by the dependency set

Dyj in Eq. (7.3), and the probability for primary input xi to evaluate to > is set

to pi. The original DSSAT formula is satisfiable with respect to a target satisfying

probability θ if and only if there exist implementations of the black boxes such that

the resultant circuit composed with the black box implementations behaves like a

tautology with respect to the required expectation θ. �

On the other hand, the probabilistic partial design problem can be encoded with

139

doi: 10.6342/NTU202101397

7.3. Applications of DSSAT

the following XDSSAT formula:

R

X,

R

Z, ∀Y, ∃T (D).(Y ≡ E(X))→ (F (X,Z, T) ≡ G(X)), (7.7)

where the primary input variables are randomly quantified with probability pxi of

xi ∈ X to reflect their weights, and the error-triggering auxiliary input variables Z

are randomly quantified according to the pre-specified error rates of the erroneous

gates in CF . Notice that the above formula takes advantage of the extension with

universal quantifiers as discussed previously.

In approximate design, a circuit implementation may deviate from its specifica-

tion by a certain extent. The amount of deviation can be characterized in a way

similar to the error probability calculation in probabilistic design. For approximate

partial design, the equivalence checking problem can be expressed by the XDSSAT

formula:

R

X, ∀Y, ∃T (D).(Y ≡ E(X))→ (F (X,T) ≡ G(X)), (7.8)

which differs from Eq. (7.7) only in requiring no auxiliary inputs. The probabili-

ties of the randomly quantified primary input variables are determined by the ap-

proximation criteria in measuring the deviation. For example, when all the input

assignments are of equal weight, the probabilities of the primary inputs are all set

to 0.5.

We note that as the engineering change order (ECO) problem [49] heavily re-

lies on partial design equivalence checking, the above DSSAT formulations provide

140

doi: 10.6342/NTU202101397

7.3. Applications of DSSAT

fundamental bases for ECOs of probabilistic and approximate designs.

7.3.2 Modeling Dec-POMDP

We demonstrate the descriptive power of DSSAT by constructing a polynomial-time

reduction from Dec-POMDP to DSSAT. Our reduction is an extension of that from

POMDP to SSAT proposed by Salmon and Poupart [100].

In essence, given a Dec-POMDP M, we will construct in polynomial time a

DSSAT formula Φ such that there is a joint policy ~π for M with value V (~π) if and

only if there is a set F of Skolem functions for Φ with satisfying probability Pr[Φ|F],

and V (~π) = Pr[Φ|F].

First we introduce the variables used in construction of the DSSAT formula and

their domains. To improve readability, we allow a variable x to take values from

a finite set U = {x1, . . . , xK}. Under this setting, a randomized quantifier

R

over

variable x specifies a distribution Pr[x ≡ xi] for each xi ∈ U . We also define a scaled

reward function:

r(s,~a) =

ρ(s,~a)−min
s′,~a′

ρ(s′,~a′)∑
s′′,~a′′

[ρ(s′′,~a′′)−min
s′,~a′

ρ(s′,~a′)]

such that r(s,~a) forms a distribution over all pairs of s and ~a, i.e., ∀s, ∀~a.r(s,~a) ≥ 0

and
∑
s,~a

r(s,~a) = 1. We will use the following variables:

• xts ∈ S: the state at stage t,

141

doi: 10.6342/NTU202101397

7.3. Applications of DSSAT

• xi,ta ∈ Ai: the action taken by Agent i at stage t,

• xi,to ∈ Oi: the observation received by Agent i at stage t,

• xtr ∈ S × (A1 × . . .× An): the reward earned at stage t,

• xtT ∈ S: transition distribution at stage t,

• xtΩ ∈ O1 × . . .×On: observation distribution at stage t,

• xtp ∈ B: used to sum up rewards across stages.

We encode elements in sets S, Ai, and Oi by integers, i.e., S = {0, 1, . . . , |S|−1},

etc., and use indices s, ai, and oi to iterate through them, respectively. On the other

hand, a special treatment is required for variables xtr and xtΩ, as they range over

Cartesian products of multiple sets. We assign a unique number to an element in a

product set as follows. Consider ~Q = Q1× . . .×Qn, where each Qi is a finite set. An

element ~q = (q1, . . . , qn) ∈ ~Q is numbered by N(q1, . . . , qn) =
∑n

i=1 qi(
∏i−1

j=1 |Qj|). In

the following construction, variables xtr and xtΩ will take values from the numbers

given to the elements in S × ~A and ~O by Nr(s,~a) and NΩ(~o), respectively.

We begin by constructing a DSSAT formula for a Dec-POMDP with h = 1.

Under this setting, the derivation of an optimal joint policy is simply finding an

action for each agent to maximize the expectation value of the reward function, i.e.,

~a∗ = arg max
~a∈ ~A

∑
s∈S

∆0(s)r(s,~a).

142

doi: 10.6342/NTU202101397

7.3. Applications of DSSAT

The following DSSAT formula encodes the above optimization problem:

R

x0
s,

R

x0
r,∃x1,0

a (Dx1,0
a

), . . . ,∃xn,0a (Dxn,0a
).φ,

where the distribution of x0
s follows Pr[x0

s ≡ s] = ∆0(s), the distribution of x0
r follows

Pr[x0
r ≡ Nr(s,~a)] = r(s,~a), each Dxi,0a

= ∅, and the matrix:

φ =
∧
s∈S

∧
~a∈ ~A

[x0
s ≡ s ∧

∧
i∈I

xi,0a ≡ ai → x0
r ≡ Nr(s,~a)].

As the existentially quantified variables have no dependency on randomly quantified

variable, the DSSAT formula is effectively an exist-random quantified SSAT formula.

For an arbitrary Dec-POMDP with h > 1, we follow the two steps proposed in

the previous work [100], namely policy selection and policy evaluation, and adapt

the policy selection step for the multi-agent setting in Dec-POMDP.

In the previous work [100], an agent’s policy selection is encoded by the following

prefix (use Agent i as an example):

∃xi,0a ,

R

x0
p,

R

xi,0o , . . . ,∃xi,h−2
a ,

R

xh−2
p ,

R

xi,h−2
o ,∃xi,h−1

a ,

R

xh−1
p .

In the above quantification, variable xtp is introduced to sum up rewards earned

at different stages. It takes values from B and follows a uniform distribution, i.e.,

Pr[xtp ≡ >] = Pr[xtp ≡ ⊥] = 0.5. When xtp ≡ ⊥, the process is stopped and the

reward at stage t is earned; when xtp ≡ >, the process is continued to stage t + 1.

Note that variables {xtp} are shared across all agents. With the help of variable

xtp, rewards earned at different stages are summed up with an equal weight 2−h.

143

doi: 10.6342/NTU202101397

7.3. Applications of DSSAT

Variable xi,to also follows a uniform distribution Pr[xi,to ≡ oi] = |Oi|−1, which scales

the satisfying probability by |Oi|−1 at each stage. Therefore, we need to re-scale the

satisfying probability accordingly in order to obtain the correct satisfying probability

corresponding to the value of a joint policy. The scaling factor will be derived in

the proof of Theorem 7.3.

As the actions of the agents can only depend on their own observation history,

for the selection of a joint policy it is not obvious how to combine the quantification

of each agent, i.e., the selection of an individual policy, into a linearly ordered prefix

required by SSAT, without suffering an exponential translation cost. On the other

hand, DSSAT allows to specify the dependency of an existentially quantified variable

freely and is suitable to encode the selection of a joint policy. In the prefix of the

DSSAT formula, variable xi,ta depends on Dxi,ta
= {xi,0o , . . . , xi,t−1

o , x0
p, . . . , x

t−1
p }.

Next, the policy evaluation step is exactly the same as that in the previous

work [100]. The following quantification computes the value of a joint policy:

R

xts,

R

xtr, t = 0, . . . , h− 1

R

xtT ,

R

xtΩ, t = 0, . . . , h− 2

Variables xts follow a uniform distribution Pr[xts ≡ s] = |S|−1 except for variable x0
s,

which follows the initial distribution specified by Pr[x0
s ≡ s] = ∆0(s); variables xtr

follow the distribution of the reward function Pr[xtr ≡ Nr(s,~a)] = r(s,~a); variables

xtT follow the state transition distribution Pr[xtTs,~a ≡ s′] = T (s,~a, s′); variables xtΩ

follow the observation distribution Pr[xtΩs′,~a ≡ NΩ(~o)] = Ω(s′,~a, ~o). Note that these

144

doi: 10.6342/NTU202101397

7.3. Applications of DSSAT

∧
0≤t≤h−2

[xtp ≡ ⊥ →
∧
i∈I

xi,to ≡ 0 ∧ xt+1
s ≡ 0 ∧ xt+1

p ≡ ⊥] (7.9)

xh−1
p ≡ ⊥ (7.10)∧
s∈S

∧
~a∈ ~A

[x0
p ≡ ⊥ ∧ x0

s ≡ s ∧
∧
i∈I

xi,0a ≡ ai → x0
r ≡ Nr(s,~a)] (7.11)

∧
1≤t≤h−1

∧
s∈S

∧
~a∈ ~A

[xt−1
p ≡ > ∧ xtp ≡ ⊥ ∧ xts ≡ s ∧

∧
i∈I

xi,ta ≡ ai → xtr ≡ Nr(s,~a)] (7.12)

∧
0≤t≤h−2

∧
s∈S

∧
~a∈ ~A

∧
s′∈S

[xtp ≡ > ∧ xts ≡ s ∧
∧
i∈I

xi,ta ≡ ai ∧ xt+1
s ≡ s′ → xtTs,~a

≡ s′] (7.13)

∧
0≤t≤h−2

∧
s′∈S

∧
~a∈ ~A

∧
~o∈~O

[xtp ≡ > ∧ xt+1
s ≡ s′ ∧

∧
i∈I

xi,ta ≡ ai ∧
∧
i∈I

xi,to ≡ oi → xtΩs′,~a
≡ NΩ(~o)] (7.14)

Figure 7.3: The formulas used to encode a Dec-POMDP M

variables encode the random mechanism of a Dec-POMDP and are hidden from the

agents. That is, variables xi,ta do not depend on the above variables.

The formulas to encode M are listed in Fig. 7.3. Eq. (7.9) encodes that when

xtp ≡ ⊥, i.e., the process is stopped, the observation xi,to and next state xt+1
s are set

to a preserved value 0, and xt+1
p ≡ ⊥. Eq. (7.10) ensures the process is stopped at

the last stage. Eq. (7.11) ensures the reward at the first stage is earned when the

process is stopped, i.e., x0
p ≡ ⊥. Eq. (7.12) requires the reward at stage t > 0 is

earned when xt−1
p ≡ > and xtp ≡ ⊥. Eq. (7.13) encodes the transition distribution

from state s to state s′ given actions ~a are taken. Eq. (7.14) encodes the observation

distribution to receive observation ~o under the situation that state s′ is reached after

actions ~a are taken.

The following theorem states the correctness of the reduction.

145

doi: 10.6342/NTU202101397

7.3. Applications of DSSAT

Pr[Φ|Fh+1
] =

2∑
v0,...,vh

|~O|∑
~o0,...,~oh−1

|S|∑
s0,...,sh

h∏
t=0

Pr[xtp ≡ vt, xts ≡ st, ~xto ≡ ~ot, xtr]
h−1∏
t=0

Pr[xtT , x
t
Ω|v

t, st, ~ot]

= 2−(h+1)
h+1∑
t̂=1

|~O|∑
~o0,...,~ot̂−2

|S|∑
s0,...,st̂−1

t̂−1∏
t=0

Pr[xts ≡ st, ~xto ≡ ~ot, xtr]
t̂−2∏
t=0

Pr[xtT , x
t
Ω|v

t, st, ~ot]

= 2−(h+1)| ~O|−h
h+1∑
t̂=1

|~O|∑
~o0,...,~ot̂−2

|S|∑
s0,...,st̂−1

t̂−1∏
t=0

Pr[xts ≡ st, xtr]
t̂−2∏
t=0

Pr[xtT , x
t
Ω|v

t, st, ~ot]

= 2−(h+1)(| ~O| · |S|)−h
h+1∑
t̂=1

|~O|∑
~o0,...,~ot̂−2

|S|∑
s0,...,st̂−1

Pr[x0
s ≡ s0]

t̂−1∏
t=0

Pr[xtr]

t̂−2∏
t=0

Pr[xtT , x
t
Ω|v

t, st, ~ot]

= 2−(h+1)(| ~O| · |S|)−h
h+1∑
t̂=1

|~O|∑
~o0,...,~ot̂−2

|S|∑
s0,...,st̂−1

Pr[x0
s ≡ s0] Pr[xt̂−1

r]

t̂−2∏
t=0

Pr[xtT , x
t
Ω|v

t, st, ~ot]

= κ−1
h+1

h+1∑
t̂=1

|~O|∑
~o0,...,~ot̂−2

|S|∑
s0,...,st̂−1

∆0(s0)r(st̂−1,~at̂−1)

t̂−2∏
t=0

T (st,~at, st+1)Ω(st+1,~at, ~ot)

= κ−1
h+1

∑
s0∈S

∆0(s0)(r(s0,~a0) +
∑
~o0∈~O

∑
s1∈S

T (s0,~a0, s1)Ω(s1,~a0, ~o0) Pr[Φ|Fh
])

= κ−1
h+1

∑
s0∈S

∆0(s0)(r(s0,~a0) +
∑
~o0∈~O

∑
s1∈S

T (s0,~a0, s1)Ω(s1,~a0, ~o0)V (~πh))(induction hypothesis)

= κ−1
h+1V (~πh+1)(by Eq. (7.2))

Figure 7.4: The derivation of the induction case in the proof of Theorem 7.3

Theorem 7.3. The above reduction maps a Dec-POMDP M to a DSSAT formula

Φ, such that a joint policy ~π exists for M if and only if a set F of Skolem functions

exists for Φ, with V (~π) = Pr[Φ|F].

Proof. Given an arbitrary Dec-POMDPM, we prove the statement via mathemat-

ical induction over the planning horizon h as follows.

For the base case h = 1, to prove the “only if” direction, consider a joint policy

~π for M that specifies ~a = (a1, . . . , an) where Agent i takes action ai. For this

146

doi: 10.6342/NTU202101397

7.3. Applications of DSSAT

joint policy, the value is computed as V (~π) =
∑

s∈S ∆0(s)r(s,~a). Based on ~π, we

construct a set F of Skolem functions where xi,0a = ai for each i ∈ I. To compute

Pr[Φ|F], we cofactor the matrix with F and arrive at the following CNF formula:

∧
s∈S

[x0
s 6= s ∨ x0

r ≡ Nr(s,~a)],

and the satisfying probability of Φ with respect to F is

Pr[Φ|F] =
∑
s∈S

Pr[x0
s ≡ s] Pr[x0

r ≡ Nr(s,~a)] =
∑
s∈S

∆0(s)r(s,~a) = V (~π).

Note that only equalities are involved in the above argument. The reasoning steps

can hence be reversed to prove the “if” direction.

For the induction step, first assume that the statement holds for a planning

horizon h > 1. For a planning horizon of h + 1, consider a joint policy ~πh+1 with

value V (~πh+1). Note that as a joint policy is a mapping from observation histories

to actions, we can build a corresponding set of Skolem functions Fh+1 to simulate

joint policy ~πh+1 for the DSSAT formula. The derivation of satisfying probability

with respect to Fh+1 is shown in Fig. 7.4. Note that to obtain the correct value

of the joint policy, we need to re-scale the satisfying probability by a scaling factor

κh+1 = 2h+1(| ~O||S|)h. As only equalities are involved in the derivation in Fig. 7.4,

the “if” direction is also proved.

Because Pr[Φ|Fh+1
] = V (~πh+1) is established, the theorem is proved according to

the principle of mathematical induction. �

147

doi: 10.6342/NTU202101397

7.3. Applications of DSSAT

∃x1,0
a x2,0

a

R

x0
p

R

x1,0
o ,

R

x2,0
o

∃x1,1
a x2,1

a

R

x1
p

0

R

xs,

R

xr,

R

xT ,

R

xΩ

......∆0(s0)T (s0,~a0, s1)Ω(s1,~a0, ~o0)r(s1,~a1)

1
|S|

0.5 0.5

~a1 = (a1
1, a

1
2)

...∃x1,1
a x2,1

a

1
|O1×O2| ~o0 = (o0

1, o
0
2)

R

x1,0
o ,

R

x2,0
o

0· · ·0∃x1,1
a x2,1

a

R

x1
p

0

R

xs,

R

xr,

R

xT ,

R

xΩ

............∆0(s0)r(s0,~a0)

1
|S|

0.5 0.5

1
|O1×O2|

0.5 0.5

~a0 = (a0
1, a

0
2)

Figure 7.5: A Dec-POMDP example with two agents and h = 2

Discussion

Below we count the numbers of variables and clauses in the resulting DSSAT formula

with respect to the input size of the given Dec-POMDP. For a stage, there are

3+2(|I|+|S|| ~A|) variables, and therefore in total the number of variables is O(h(|I|+

|S||A|)) asymptotically. On the other hand, the number of clauses per stage is

2+|I|+|S|| ~A|+|S|2| ~A|+|S|| ~A|| ~O|, and hence the total number of clauses is O(h(|I|+

|S|| ~A|(|S|+ | ~O|)). Overall, we show that the proposed reduction is polynomial-time

with respect to the input size of the Dec-POMDP.

Below we demonstrate the reduction with an example.

Example 7.3. Consider a Dec-POMDP with two agents and planning horizon h =

148

doi: 10.6342/NTU202101397

7.3. Applications of DSSAT

2. Given a joint policy (π1, π2) for Agent 1 and Agent 2, let the actions taken at

t = 0 be ~a0 = (a0
1, a

0
2) and the actions taken at t = 1 under observations ~o0 = (o0

1, o
0
2)

be ~a1 = (a1
1, a

1
2). The value of this joint policy is computed by Eq. (7.2) as:

V (π) =
∑
s0∈S

∆0(s0)[r(s0,~a0) +
∑
~o0∈ ~O

∑
s1∈S

T (s0,~a0, s1)Ω(s1,~a0, ~o0)r(s1,~a1)].

The decision tree of the converted DSSAT formula is shown in Fig. 7.5. At

t = 0, after taking actions ~a0, variable x0
p splits into two cases: when x0

p ≡ ⊥ (left

branch), the expected reward ∆0(s0)r(s0,~a0) will be earned for t = 0; on the other

hand, when x0
p ≡ > (right branch), observation ~o0 is received, based on which the

agents will select their actions ~a1 at t = 1. Again, variable x1
p will split into two

cases, but this time x1
p is forced to be ⊥ as it is the last stage. The expected reward

∆0(s0)T (s0,~a0, s1)Ω(s1,~a0, ~o0)r(s1,~a1) will be earned under the branch of x1
p ≡ ⊥ for

t = 1. Note that the randomized quantifiers over variables xtp, x
t
s, and xto will scale

the satisfying probability by the factors labelled on the edges, respectively. Therefore,

we have to re-scale the satisfying probability by 22|S||O1×O2|, which is predicted by

the scaling factor κh = 2h(| ~O||S|)h−1 calculated in the proof of Theorem 7.3.

149

doi: 10.6342/NTU202101397

doi: 10.6342/NTU202101397

Chapter 8

Conclusion and Future Work

In this dissertation, we contributed to the research needs highlighted in Chapter 1.

The applicability of SSAT to the analysis of VLSI systems was examined. We

formulated a framework for the property evaluation of probabilistic design. The

average-case and worst-case analyses are encoded as random-exist and exist-random

quantified SSAT formulas, respectively.

Motivated by the emerging VLSI applications, we further devised novel algo-

rithms for random-exist and exist-random quantified SSAT formulas. The pro-

posed algorithms leverage the success from SAT/QBF-solving and model-counting

communities and advance the state-of-the-art of SSAT solving beyond the conven-

tional DPLL-based search. For random-exist quantified SSAT formulas, we used

minterm generalization and weighted model counting as subroutines and employed

151

doi: 10.6342/NTU202101397

Chapter 8. Conclusion and Future Work

SAT solvers and weighted model counters as plug-in engines. For exist-random quan-

tified SSAT formulas, we proposed clause-containment learning, which was inspired

by clause selection from QBF solving. Under the framework of clause-containment

learning, we explored three heuristics to strengthen learnt clauses. Moreover, unlike

previous exact approaches, the proposed algorithms can solve approximate SSAT

by deriving upper and lower bounds of satisfying probabilities. Our evaluation

showed the benefits of the proposed solvers over a wide range of formula instances.

Furthermore, our implementations and the benchmark suite of SSAT instances are

open-source for other researchers to base their work on top of our results.

To generalize SSAT beyond the PSPACE-complete complexity class for more

complex problems, we extended DQBF to its stochastic variant DSSAT and proved

its NEXPTIME-completeness. Compared to the PSPACE-complete SSAT, DSSAT

is more powerful to succinctly model NEXPTIME-complete decision problems with

uncertainty. We demonstrated the DSSAT formulation of the analysis to proba-

bilistic/approximate partial design and gave a polynomial-time reduction from the

NEXPTIME-complete Dec-POMDP to DSSAT.

We highlight several directions for future investigation. First, in order to improve

the scalability of probabilistic property evaluation, we are interested in approximate

approaches based on simulation techniques. In addition to the conventional Monte

Carlo method, circuit simulation based on symbolic sampling [52] may have much

potential. Another line of on-going work is to develop solvers for arbitrarily quanti-

152

doi: 10.6342/NTU202101397

Chapter 8. Conclusion and Future Work

fied SSAT and DSSAT formulas. Recently, clause selection has been adapted to solve

random-exist quantified SSAT formulas and combined with the clause-containment

learning in a recursive manner to solve general SSAT [19]. It is also extended to

DQBF [110], which might provide a promising framework for DSSAT solving. From

the view of practical implementation, SSAT solvers will benefit from a tight in-

tegration with model-counting components. More advanced data structures, e.g.,

d-DNNF [25, 26], could be also integrated. In particular, incremental model count-

ing might be a key step to boost the performance of SSAT solvers if the computa-

tional efforts among different counting queries can be effectively shared. Motivated

by approximate model counting, we also hope to pursue a similar formulation for

SSAT solving. Specifically, we envisage a unified SSAT framework that allows users

to control the solution precision, in order to trade inexactness for better scalabil-

ity. Finally, we would like to bring SSAT to different research fields, especially to

machine-learning applications. The SSAT solvers developed in this dissertation have

been applied to verify the fairness of supervised-learning algorithms [38]. According

to the reported data [38], using the proposed SSAT solvers achieves several orders

of magnitude improvement over the state-of-the-art tools. This success shows the

great potential and benefit of SSAT solving.

153

doi: 10.6342/NTU202101397

doi: 10.6342/NTU202101397

Bibliography

[1] L. Amarú, P.-E. Gaillardon, and G. De Micheli. 2015. The EPFL combina-

tional benchmark suite. In Proceedings of the International Workshop on Logic

& Synthesis. https://www.epfl.ch/labs/lsi/page-102566-en-html/

benchmarks/

[2] R. A. Aziz, G. Chu, C. J. Muise, and P. J. Stuckey. 2015. #∃SAT: Projected

model counting. In Proceedings of the International Conference on Theory and

Applications of Satisfiability Testing, SAT (LNCS 9340). Springer, 121–137.

https://doi.org/10.1007/978-3-319-24318-4_10

[3] F. Bacchus, S. Dalmao, and T. Pitassi. 2003. Algorithms and complexity

results for #SAT and Bayesian inference. In Proceedings of the Annual Sym-

posium on Foundations of Computer Science, FOCS. IEEE Computer Society,

340–351. https://doi.org/10.1109/SFCS.2003.1238208

[4] R. I. Bahar, J. L. Mundy, and J. Chen. 2003. A probabilistic-based design

methodology for nanoscale computation. In Proceedings of the International

155

https://www.epfl.ch/labs/lsi/page-102566-en-html/benchmarks/
https://www.epfl.ch/labs/lsi/page-102566-en-html/benchmarks/
https://doi.org/10.1007/978-3-319-24318-4_10
https://doi.org/10.1109/SFCS.2003.1238208

doi: 10.6342/NTU202101397

BIBLIOGRAPHY

Conference on Computer-Aided Design, ICCAD. IEEE Computer Society /

ACM, 480–486. https://doi.org/10.1109/ICCAD.2003.1257854

[5] V. Balabanov, H.-J. K. Chiang, and J.-H. R. Jiang. 2014. Henkin quantifiers

and Boolean formulae: A certification perspective of DQBF. Theoretical Com-

puter Science 523 (2014), 86–100. https://doi.org/10.1016/j.tcs.2013.

12.020

[6] C. W. Barrett and C. Tinelli. 2018. Satisfiability modulo theories. In Hand-

book of Model Checking. Springer, 305–343. https://doi.org/10.1007/

978-3-319-10575-8_11

[7] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and

P. Schnoebelen. 2013. Systems and Software Verification: Model-Checking

Techniques and Tools (1st ed.). Springer. https://doi.org/10.1007/

978-3-662-04558-9

[8] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. 2002. The com-

plexity of decentralized control of Markov decision processes. Mathematics

of Operations Research 27, 4 (2002), 819–840. https://doi.org/10.1287/

moor.27.4.819.297

[9] D. Beyer, S. Löwe, and P. Wendler. 2019. Reliable benchmarking: Re-

quirements and solutions. International Journal on Software Tools for

Technology Transfer 21, 1 (2019), 1–29. https://doi.org/10.1007/

s10009-017-0469-y

156

https://doi.org/10.1109/ICCAD.2003.1257854
https://doi.org/10.1016/j.tcs.2013.12.020
https://doi.org/10.1016/j.tcs.2013.12.020
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-662-04558-9
https://doi.org/10.1007/978-3-662-04558-9
https://doi.org/10.1287/moor.27.4.819.297
https://doi.org/10.1287/moor.27.4.819.297
https://doi.org/10.1007/s10009-017-0469-y
https://doi.org/10.1007/s10009-017-0469-y

doi: 10.6342/NTU202101397

BIBLIOGRAPHY

[10] A. Biere, M. Heule, H. van Maaren, and T. Walsh (Eds.). 2009. Handbook

of Satisfiability. Frontiers in Artificial Intelligence and Applications, Vol. 185.

IOS Press.

[11] R. K. Brayton and A. Mishchenko. 2010. ABC: An academic industrial-

strength verification tool. In Proceedings of the International Conference on

Computer Aided Verification, CAV (LNCS 6174). Springer, 24–40. https:

//doi.org/10.1007/978-3-642-14295-6_5 Available at: https://github.

com/berkeley-abc/abc.

[12] F. Brglez and H. Fujiwara. 1985. A neutral netlist of 10 combinational bench-

mark circuits. In Proceedings of the International Symposium on Circuits and

Systems, ISCAS. IEEE, 695–698. https://people.engr.ncsu.edu/brglez/

CBL/benchmarks/index.html

[13] H. K. Büning and U. Bubeck. 2009. Theory of quantified Boolean formulas. In

Handbook of Satisfiability. IOS Press, 735–760. https://doi.org/10.3233/

978-1-58603-929-5-735

[14] M. Cadoli, T. Eiter, and G. Gottlob. 1997. Default logic as a query language.

IEEE Transactions on Knowledge and Data Engineering 9, 3 (1997), 448–463.

https://doi.org/10.1109/69.599933

[15] S. Chakraborty, K. S. Meel, and M. Y. Vardi. 2013. A scalable approximate

model counter. In Proceedings of the International Conference on Principles

157

https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/978-3-642-14295-6_5
https://github.com/berkeley-abc/abc
https://github.com/berkeley-abc/abc
https://people.engr.ncsu.edu/brglez/CBL/benchmarks/index.html
https://people.engr.ncsu.edu/brglez/CBL/benchmarks/index.html
https://doi.org/10.3233/978-1-58603-929-5-735
https://doi.org/10.3233/978-1-58603-929-5-735
https://doi.org/10.1109/69.599933

doi: 10.6342/NTU202101397

BIBLIOGRAPHY

and Practice of Constraint Programming, CP (LNCS 8124). Springer, 200–

216. https://doi.org/10.1007/978-3-642-40627-0_18

[16] S. Chakraborty, K. S. Meel, and M. Y. Vardi. 2016. Algorithmic improvements

in approximate counting for probabilistic inference: From linear to logarithmic

SAT calls. In Proceedings of the International Joint Conference on Artificial

Intelligence, IJCAI. IJCAI/AAAI Press, 3569–3576. http://www.ijcai.

org/Abstract/16/503

[17] L. N. B. Chakrapani, J. George, B. Marr, B. E. S. Akgul, and K. V.

Palem. 2006. Probabilistic design: A survey of probabilistic CMOS tech-

nology and future directions for terascale IC design. In Proceedings of the In-

ternational Conference on Very Large Scale Integration of System on Chip,

VLSI-SoC (IFIP 249). Springer, 101–118. https://doi.org/10.1007/

978-0-387-74909-9_7

[18] M. Chavira and A. Darwiche. 2008. On probabilistic inference by weighted

model counting. Artificial Intelligence 172, 6-7 (2008), 772–799. https:

//doi.org/10.1016/j.artint.2007.11.002

[19] P.-W. Chen, Y.-C. Huang, and J.-H. R. Jiang. 2021. A sharp leap from quanti-

fied Boolean formula to stochastic Boolean satisfiability solving. In Proceedings

of the AAAI Conference on Artificial Intelligence, AAAI. AAAI Press, 3697–

3706. https://ojs.aaai.org/index.php/AAAI/article/view/16486

[20] M. R. Choudhury and K. Mohanram. 2009. Reliability analysis of logic circuits.

158

https://doi.org/10.1007/978-3-642-40627-0_18
http://www.ijcai.org/Abstract/16/503
http://www.ijcai.org/Abstract/16/503
https://doi.org/10.1007/978-0-387-74909-9_7
https://doi.org/10.1007/978-0-387-74909-9_7
https://doi.org/10.1016/j.artint.2007.11.002
https://doi.org/10.1016/j.artint.2007.11.002
https://ojs.aaai.org/index.php/AAAI/article/view/16486

doi: 10.6342/NTU202101397

BIBLIOGRAPHY

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems 28, 3 (2009), 392–405. https://doi.org/10.1109/TCAD.2009.2012530

[21] E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. 2001. Bounded model checking

using satisfiability solving. Formal Methods in System Design 19, 1 (2001),

7–34. https://doi.org/10.1023/A:1011276507260

[22] C. Constantinescu. 2003. Trends and challenges in VLSI circuit reliability.

IEEE Micro 23, 4 (2003), 14–19. https://doi.org/10.1109/MM.2003.

1225959

[23] S. A. Cook. 1971. The complexity of theorem-proving procedures. In Pro-

ceedings of the Annual Symposium on Theory of Computing, STOC. ACM,

151–158. https://doi.org/10.1145/800157.805047

[24] G. F. Cooper. 1990. The computational complexity of probabilistic inference

using Bayesian belief networks. Artificial Intelligence 42, 2-3 (1990), 393–405.

https://doi.org/10.1016/0004-3702(90)90060-D

[25] A. Darwiche. 2001. Decomposable negation normal form. J. ACM 48, 4

(2001), 608–647. https://doi.org/10.1145/502090.502091

[26] A. Darwiche. 2002. A compiler for deterministic, decomposable negation nor-

mal form. In Proceedings of the AAAI Conference on Artificial Intelligence,

AAAI. AAAI Press / The MIT Press, 627–634. http://www.aaai.org/

Library/AAAI/2002/aaai02-094.php

159

https://doi.org/10.1109/TCAD.2009.2012530
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1109/MM.2003.1225959
https://doi.org/10.1109/MM.2003.1225959
https://doi.org/10.1145/800157.805047
https://doi.org/10.1016/0004-3702(90)90060-D
https://doi.org/10.1145/502090.502091
http://www.aaai.org/Library/AAAI/2002/aaai02-094.php
http://www.aaai.org/Library/AAAI/2002/aaai02-094.php

doi: 10.6342/NTU202101397

BIBLIOGRAPHY

[27] A. Darwiche and P. Marquis. 2002. A knowledge compilation map. Journal

of Artificial Intelligence Research 17 (2002), 229–264. https://doi.org/10.

1613/jair.989

[28] M. Davis, G. Logemann, and D. W. Loveland. 1962. A machine program for

theorem-proving. Commun. ACM 5, 7 (1962), 394–397. https://doi.org/

10.1145/368273.368557

[29] L. M. de Moura and N. Bjørner. 2011. Satisfiability modulo theories: In-

troduction and applications. Commun. ACM 54, 9 (2011), 69–77. https:

//doi.org/10.1145/1995376.1995394

[30] R. Dechter. 1998. Bucket elimination: A unifying framework for probabilis-

tic inference. In Learning in Graphical Models. NATO ASI Series, Vol. 89.

Springer, 75–104. https://doi.org/10.1007/978-94-011-5014-9_4

[31] J. M. Dudek, V. H. N. Phan, and M. Y. Vardi. 2020. DPMC: Weighted model

counting by dynamic programming on project-join trees. In Proceedings of the

International Conference on Principles and Practice of Constraint Program-

ming, CP (LNCS 12333). Springer, 211–230. https://doi.org/10.1007/

978-3-030-58475-7_13

[32] J. M. Dudek, V. H. N. Phan, and M. Y. Vardi. 2021. ProCount: Weighted

projected model counting with graded project-join trees. In Proceedings of the

International Conference on Theory and Applications of Satisfiability Test-

160

https://doi.org/10.1613/jair.989
https://doi.org/10.1613/jair.989
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1007/978-94-011-5014-9_4
https://doi.org/10.1007/978-3-030-58475-7_13
https://doi.org/10.1007/978-3-030-58475-7_13

doi: 10.6342/NTU202101397

BIBLIOGRAPHY

ing, SAT (LNCS 12831). Springer, 152–170. https://doi.org/10.1007/

978-3-030-80223-3_11

[33] N. Eén and N. Sörensson. 2003. An extensible SAT-solver. In Proceedings

of the International Conference on Theory and Applications of Satisfiability

Testing, SAT (LNCS 2919). Springer, 502–518. https://doi.org/10.1007/

978-3-540-24605-3_37

[34] N. Eén and N. Sörensson. 2003. Temporal induction by incremental SAT

solving. Electronic Notes in Theoretical Computer Science 89, 4 (2003), 543–

560. https://doi.org/10.1016/S1571-0661(05)82542-3

[35] W. Faber and F. Ricca. 2005. Solving hard ASP programs efficiently. In

Proceedings of the International Conference on Logic Programming and Non-

monotonic Reasoning, LPNMR (LNCS 3662). Springer, 240–252. https:

//doi.org/10.1007/11546207_19

[36] J. K. Fichte, M. Hecher, and F. Hamiti. 2020. The model counting competition

2020. CoRR abs/2012.01323 (2020). arXiv:2012.01323 https://arxiv.org/

abs/2012.01323

[37] D. J. Fremont, M. N. Rabe, and S. A. Seshia. 2017. Maximum model counting.

In Proceedings of the AAAI Conference on Artificial Intelligence, AAAI. AAAI

Press, 3885–3892. http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/

view/14968

161

https://doi.org/10.1007/978-3-030-80223-3_11
https://doi.org/10.1007/978-3-030-80223-3_11
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1016/S1571-0661(05)82542-3
https://doi.org/10.1007/11546207_19
https://doi.org/10.1007/11546207_19
https://arxiv.org/abs/2012.01323
https://arxiv.org/abs/2012.01323
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14968
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14968

doi: 10.6342/NTU202101397

BIBLIOGRAPHY

[38] B. Ghosh, D. Basu, and K. S.Meel. 2021. Justicia: A stochastic SAT approach

to formally verify fairness. In Proceedings of the AAAI Conference on Artificial

Intelligence, AAAI. AAAI Press, 7554–7563. https://ojs.aaai.org/index.

php/AAAI/article/view/16925

[39] K. Gitina, S. Reimer, M. Sauer, R. Wimmer, C. Scholl, and B. Becker. 2013.

Equivalence checking of partial designs using dependency quantified Boolean

formulae. In Proceedings of the International Conference on Computer Design,

ICCD. 396–403. https://doi.org/10.1109/ICCD.2013.6657071

[40] C. P. Gomes, J. Hoffmann, A. Sabharwal, and B. Selman. 2007. From sampling

to model counting. In Proceedings of the International Joint Conference on

Artificial Intelligence, IJCAI. Morgan Kaufmann, 2293–2299. http://ijcai.

org/Proceedings/07/Papers/369.pdf

[41] C. P. Gomes, A. Sabharwal, and B. Selman. 2006. Model counting: A new

strategy for obtaining good bounds. In Proceedings of the AAAI Conference

on Artificial Intelligence, AAAI. AAAI Press, 54–61. http://www.aaai.org/

Library/AAAI/2006/aaai06-009.php

[42] C. P. Gomes, A. Sabharwal, and B. Selman. 2009. Model counting. In

Handbook of Satisfiability. IOS Press, 633–654. https://doi.org/10.3233/

978-1-58603-929-5-633

[43] H. Hansson and B. Jonsson. 1989. A framework for reasoning about time and

162

https://ojs.aaai.org/index.php/AAAI/article/view/16925
https://ojs.aaai.org/index.php/AAAI/article/view/16925
https://doi.org/10.1109/ICCD.2013.6657071
http://ijcai.org/Proceedings/07/Papers/369.pdf
http://ijcai.org/Proceedings/07/Papers/369.pdf
http://www.aaai.org/Library/AAAI/2006/aaai06-009.php
http://www.aaai.org/Library/AAAI/2006/aaai06-009.php
https://doi.org/10.3233/978-1-58603-929-5-633
https://doi.org/10.3233/978-1-58603-929-5-633

doi: 10.6342/NTU202101397

BIBLIOGRAPHY

reliability. In Proceedings of the Real-Time Systems Symposium, RTSS. IEEE

Computer Society, 102–111. https://doi.org/10.1109/REAL.1989.63561

[44] B. Hnich, R. Rossi, S. A. Tarim, and S. Prestwich. 2011. A survey on CP-AI-

OR hybrids for decision making under uncertainty. In Hybrid Optimization:

The Ten Years of CPAIOR. Springer, 227–270. https://doi.org/10.1007/

978-1-4419-1644-0_7

[45] J. Huang. 2006. Combining knowledge compilation and search for confor-

mant probabilistic planning. In Proceedings of the International Conference

on Automated Planning and Scheduling, ICAPS. AAAI, 253–262. http:

//www.aaai.org/Library/ICAPS/2006/icaps06-026.php

[46] M. Janota and J. P. Marques-Silva. 2015. Solving QBF by clause selection.

In Proceedings of the International Joint Conference on Artificial Intelligence,

IJCAI. AAAI Press, 325–331. http://ijcai.org/Abstract/15/052

[47] F. V. Jensen. 1996. An Introduction to Bayesian Networks. Taylor & Francis.

[48] R. Jhala and R. Majumdar. 2009. Software model checking. Comput. Surveys

41, 4 (2009), 21:1–21:54. https://doi.org/10.1145/1592434.1592438

[49] J.-H. R. Jiang, V. N. Kravets, and N.-Z. Lee. 2020. Engineering change order

for combinational and sequential design rectification. In Proceedings of the

Design, Automation & Test in Europe Conference & Exhibition, DATE. IEEE,

726–731. https://doi.org/10.23919/DATE48585.2020.9116504

163

https://doi.org/10.1109/REAL.1989.63561
https://doi.org/10.1007/978-1-4419-1644-0_7
https://doi.org/10.1007/978-1-4419-1644-0_7
http://www.aaai.org/Library/ICAPS/2006/icaps06-026.php
http://www.aaai.org/Library/ICAPS/2006/icaps06-026.php
http://ijcai.org/Abstract/15/052
https://doi.org/10.1145/1592434.1592438
https://doi.org/10.23919/DATE48585.2020.9116504

doi: 10.6342/NTU202101397

BIBLIOGRAPHY

[50] A. B. Kahng and S. Kang. 2012. Accuracy-configurable adder for approximate

arithmetic designs. In Proceedings of the Annual Design Automation Confer-

ence, DAC. ACM, 820–825. https://doi.org/10.1145/2228360.2228509

[51] Y. Kim, Y. Zhang, and P. Li. 2013. An energy efficient approximate adder

with carry skip for error resilient neuromorphic VLSI systems. In Proceedings

of the International Conference on Computer-Aided Design, ICCAD. IEEE,

130–137. https://doi.org/10.1109/ICCAD.2013.6691108

[52] V. N. Kravets, N.-Z. Lee, and J.-H. R. Jiang. 2019. Comprehensive search

for ECO rectification using symbolic sampling. In Proceedings of the Annual

Design Automation Conference, DAC. ACM, 71:1–71:6. https://doi.org/

10.1145/3316781.3317790

[53] S. Krishnaswamy, G. F. Viamontes, I. L. Markov, and J. P. Hayes. 2005.

Accurate reliability evaluation and enhancement via probabilistic transfer

matrices. In Proceedings of the Design, Automation & Test in Europe Con-

ference & Exhibition, DATE. IEEE Computer Society, 282–287. https:

//doi.org/10.1109/DATE.2005.47

[54] A. Kuehlmann and F. Krohm. 1997. Equivalence checking using cuts and

heaps. In Proceedings of the Annual Design Automation Conference, DAC.

ACM Press, 263–268. https://doi.org/10.1145/266021.266090

[55] N. Kushmerick, S. Hanks, and D. S. Weld. 1995. An algorithm for probabilistic

164

https://doi.org/10.1145/2228360.2228509
https://doi.org/10.1109/ICCAD.2013.6691108
https://doi.org/10.1145/3316781.3317790
https://doi.org/10.1145/3316781.3317790
https://doi.org/10.1109/DATE.2005.47
https://doi.org/10.1109/DATE.2005.47
https://doi.org/10.1145/266021.266090

doi: 10.6342/NTU202101397

BIBLIOGRAPHY

planning. Artificial Intelligence 76, 1-2 (1995), 239–286. https://doi.org/

10.1016/0004-3702(94)00087-H

[56] M. Z. Kwiatkowska, G. Norman, and D. Parker. 2002. PRISM: Proba-

bilistic symbolic model checker. In Proceedings of the International Confer-

ence on Computer Performance Evaluation, Modelling Techniques and Tools,

TOOLS (LNCS 2324). Springer, 200–204. https://doi.org/10.1007/

3-540-46029-2_13

[57] M. Lauria, J. Elffers, J. Nordström, and M. Vinyals. 2017. CNFgen: A gener-

ator of crafted benchmarks. In Proceedings of the International Conference

on Theory and Applications of Satisfiability Testing, SAT (LNCS 10491).

Springer, 464–473. https://doi.org/10.1007/978-3-319-66263-3_30

[58] N.-Z. Lee. 2021. Reproduction package for doctoral dissertation “Stochas-

tic Boolean Satisfiability: Decision Procedures, Generalization, and Applica-

tions”. https://doi.org/10.5281/zenodo.5084147

[59] N.-Z. Lee and J.-H. R. Jiang. 2014. Towards formal evaluation and verifi-

cation of probabilistic design. In Proceedings of the International Conference

on Computer-Aided Design, ICCAD. IEEE, 340–347. https://doi.org/10.

1109/ICCAD.2014.7001372

[60] N.-Z. Lee and J.-H. R. Jiang. 2018. Towards formal evaluation and verification

of probabilistic design. IEEE Trans. Comput. 67, 8 (2018), 1202–1216. https:

//doi.org/10.1109/TC.2018.2807431

165

https://doi.org/10.1016/0004-3702(94)00087-H
https://doi.org/10.1016/0004-3702(94)00087-H
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/3-540-46029-2_13
https://doi.org/10.1007/978-3-319-66263-3_30
https://doi.org/10.5281/zenodo.5084147
https://doi.org/10.1109/ICCAD.2014.7001372
https://doi.org/10.1109/ICCAD.2014.7001372
https://doi.org/10.1109/TC.2018.2807431
https://doi.org/10.1109/TC.2018.2807431

doi: 10.6342/NTU202101397

BIBLIOGRAPHY

[61] N.-Z. Lee and J.-H. R. Jiang. 2021. Dependency stochastic Boolean satis-

fiability: A logical formalism for NEXPTIME decision problems with un-

certainty. In Proceedings of the AAAI Conference on Artificial Intelligence,

AAAI. AAAI Press, 3877–3885. https://ojs.aaai.org/index.php/AAAI/

article/view/16506

[62] N.-Z. Lee, Y.-S. Wang, and J.-H. R. Jiang. 2017. Solving stochastic Boolean

satisfiability under random-exist quantification. In Proceedings of the Interna-

tional Joint Conference on Artificial Intelligence, IJCAI. IJCAI Organization,

688–694. https://doi.org/10.24963/ijcai.2017/96

[63] N.-Z. Lee, Y.-S. Wang, and J.-H. R. Jiang. 2018. Solving exist-random quan-

tified stochastic Boolean satisfiability via clause selection. In Proceedings of

the International Joint Conference on Artificial Intelligence, IJCAI. IJCAI

Organization, 1339–1345. https://doi.org/10.24963/ijcai.2018/186

[64] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello.

2006. The DLV system for knowledge representation and reasoning. ACM

Transactions on Computational Logic 7, 3 (2006), 499–562. https://doi.

org/10.1145/1149114.1149117

[65] L. Li and H. Zhou. 2014. On error modeling and analysis of approximate

adders. In Proceedings of the International Conference on Computer-Aided

Design, ICCAD. IEEE, 511–518. https://doi.org/10.1109/ICCAD.2014.

7001399

166

https://ojs.aaai.org/index.php/AAAI/article/view/16506
https://ojs.aaai.org/index.php/AAAI/article/view/16506
https://doi.org/10.24963/ijcai.2017/96
https://doi.org/10.24963/ijcai.2018/186
https://doi.org/10.1145/1149114.1149117
https://doi.org/10.1145/1149114.1149117
https://doi.org/10.1109/ICCAD.2014.7001399
https://doi.org/10.1109/ICCAD.2014.7001399

doi: 10.6342/NTU202101397

BIBLIOGRAPHY

[66] K. Lingasubramanian, S. M. Alam, and S. Bhanja. 2011. Maximum error

modeling for fault-tolerant computation using maximum a posteriori (MAP)

hypothesis. Microelectronics Reliability 51, 2 (2011), 485–501. https://doi.

org/10.1016/j.microrel.2010.07.156

[67] K. Lingasubramanian and S. Bhanja. 2007. Probabilistic maximum error mod-

eling for unreliable logic circuits. In Proceedings of the Great Lakes Symposium

on VLSI, GLSVLSI. ACM, 223–226. https://doi.org/10.1145/1228784.

1228842

[68] M. L. Littman, J. Goldsmith, and M. Mundhenk. 1998. The computational

complexity of probabilistic planning. Journal of Artificial Intelligence Research

9 (1998), 1–36. https://doi.org/10.1613/jair.505

[69] M. L. Littman, S. M. Majercik, and T. Pitassi. 2001. Stochastic Boolean

satisfiability. Journal of Automated Reasoning 27, 3 (2001), 251–296. https:

//doi.org/10.1023/A:1017584715408

[70] S. M. Majercik. 2004. Nonchronological backtracking in stochastic Boolean

satisfiability. In Proceedings of the International Conference on Tools with

Artificial Intelligence, ITCAI. IEEE Computer Society, 498–507. https:

//doi.org/10.1109/ICTAI.2004.94

[71] S. M. Majercik. 2007. APPSSAT: Approximate probabilistic planning using

stochastic satisfiability. International Journal of Approximate Reasoning 45,

2 (2007), 402–419. https://doi.org/10.1016/j.ijar.2006.06.016

167

https://doi.org/10.1016/j.microrel.2010.07.156
https://doi.org/10.1016/j.microrel.2010.07.156
https://doi.org/10.1145/1228784.1228842
https://doi.org/10.1145/1228784.1228842
https://doi.org/10.1613/jair.505
https://doi.org/10.1023/A:1017584715408
https://doi.org/10.1023/A:1017584715408
https://doi.org/10.1109/ICTAI.2004.94
https://doi.org/10.1109/ICTAI.2004.94
https://doi.org/10.1016/j.ijar.2006.06.016

doi: 10.6342/NTU202101397

BIBLIOGRAPHY

[72] S. M. Majercik. 2009. Stochastic Boolean satisfiability. In Hand-

book of Satisfiability. IOS Press, 887–925. https://doi.org/10.3233/

978-1-58603-929-5-887

[73] S. M. Majercik and B. Boots. 2005. DC-SSAT: A divide-and-conquer approach

to solving stochastic satisfiability problems efficiently. In Proceedings of the

AAAI Conference on Artificial Intelligence, AAAI. AAAI Press / The MIT

Press, 416–422. http://www.aaai.org/Library/AAAI/2005/aaai05-066.

php

[74] S. M. Majercik and M. L. Littman. 1998. MAXPLAN: A new approach to

probabilistic planning. In Proceedings of the International Conference on Arti-

ficial Intelligence Planning Systems, AIPS. AAAI, 86–93. http://www.aaai.

org/Library/AIPS/1998/aips98-011.php

[75] S. M. Majercik and M. L. Littman. 2003. Contingent planning under un-

certainty via stochastic satisfiability. Artificial Intelligence 147, 1-2 (2003),

119–162. https://doi.org/10.1016/S0004-3702(02)00379-X

[76] D. Marculescu, R. Marculescu, and M. Pedram. 1998. Trace-driven steady-

state probability estimation in FSMs with application to power estimation.

In Proceedings of the Design, Automation & Test in Europe Conference &

Exhibition, DATE. IEEE Computer Society, 774–779. https://doi.org/10.

1109/DATE.1998.655946

[77] J. P. Marques-Silva and K. A. Sakallah. 2000. Boolean satisfiability in elec-

168

https://doi.org/10.3233/978-1-58603-929-5-887
https://doi.org/10.3233/978-1-58603-929-5-887
http://www.aaai.org/Library/AAAI/2005/aaai05-066.php
http://www.aaai.org/Library/AAAI/2005/aaai05-066.php
http://www.aaai.org/Library/AIPS/1998/aips98-011.php
http://www.aaai.org/Library/AIPS/1998/aips98-011.php
https://doi.org/10.1016/S0004-3702(02)00379-X
https://doi.org/10.1109/DATE.1998.655946
https://doi.org/10.1109/DATE.1998.655946

doi: 10.6342/NTU202101397

BIBLIOGRAPHY

tronic design automation. In Proceedings of the Annual Design Automation

Conference, DAC. ACM, 675–680. https://doi.org/10.1145/337292.

337611

[78] J. Miao, A. Gerstlauer, and M. Orshansky. 2013. Approximate logic synthesis

under general error magnitude and frequency constraints. In Proceedings of the

International Conference on Computer-Aided Design, ICCAD. IEEE, 779–786.

https://doi.org/10.1109/ICCAD.2013.6691202

[79] J. Miao, A. Gerstlauer, and M. Orshansky. 2014. Multi-level approximate logic

synthesis under general error constraints. In Proceedings of the International

Conference on Computer-Aided Design, ICCAD. IEEE, 504–510. https:

//doi.org/10.1109/ICCAD.2014.7001398

[80] A. Mishchenko, S. Chatterjee, R. K. Brayton, and N. Eén. 2006. Improve-

ments to combinational equivalence checking. In Proceedings of the Inter-

national Conference on Computer-Aided Design, ICCAD. ACM, 836–843.

https://doi.org/10.1145/1233501.1233679

[81] N. Miskov-Zivanov and D. Marculescu. 2008. Modeling and optimization for

soft-error reliability of sequential circuits. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems 27, 5 (2008), 803–816.

https://doi.org/10.1109/TCAD.2008.917591

[82] N. Miskov.Zivanov and D. Marculescu. 2006. Circuit reliability analysis using

symbolic techniques. IEEE Transactions on Computer-Aided Design of Inte-

169

https://doi.org/10.1145/337292.337611
https://doi.org/10.1145/337292.337611
https://doi.org/10.1109/ICCAD.2013.6691202
https://doi.org/10.1109/ICCAD.2014.7001398
https://doi.org/10.1109/ICCAD.2014.7001398
https://doi.org/10.1145/1233501.1233679
https://doi.org/10.1109/TCAD.2008.917591

doi: 10.6342/NTU202101397

BIBLIOGRAPHY

grated Circuits and Systems 25, 12 (2006), 2638–2649. https://doi.org/

10.1109/TCAD.2006.882592

[83] S. Mitra, M. Zhang, S. Waqas, N. Seifert, B. S. Gill, and K. S. Kim. 2006.

Combinational logic soft error correction. In Proceedings of the International

Test Conference, ITC. IEEE Computer Society, 1–9. https://doi.org/10.

1109/TEST.2006.297681

[84] K. Mohanram and N. A. Touba. 2003. Cost-effective approach for reducing

soft error failure rate in logic circuits. In Proceedings of the International Test

Conference, ITC. IEEE Computer Society, 893–901. https://doi.org/10.

1109/TEST.2003.1271075

[85] G. E. Moore. 1965. Cramming more components onto integrated circuits. Elec-

tronics 38, 8 (1965), 114–117. https://newsroom.intel.com/wp-content/

uploads/sites/11/2018/05/moores-law-electronics.pdf

[86] V. Mrazek, S. S. Sarwar, L. Sekanina, Z. Vaśıcek, and K. Roy. 2016. De-

sign of power-efficient approximate multipliers for approximate artificial neural

networks. In Proceedings of the International Conference on Computer-Aided

Design, ICCAD. ACM, 81:1–81:7. https://doi.org/10.1145/2966986.

2967021

[87] F. N. Najm. 1994. A survey of power estimation techniques in VLSI cir-

cuits. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 2,

4 (1994), 446–455. https://doi.org/10.1109/92.335013

170

https://doi.org/10.1109/TCAD.2006.882592
https://doi.org/10.1109/TCAD.2006.882592
https://doi.org/10.1109/TEST.2006.297681
https://doi.org/10.1109/TEST.2006.297681
https://doi.org/10.1109/TEST.2003.1271075
https://doi.org/10.1109/TEST.2003.1271075
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/05/moores-law-electronics.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/05/moores-law-electronics.pdf
https://doi.org/10.1145/2966986.2967021
https://doi.org/10.1145/2966986.2967021
https://doi.org/10.1109/92.335013

doi: 10.6342/NTU202101397

BIBLIOGRAPHY

[88] M. Narizzano, L. Pulina, and A. Tacchella. 2006. The QBFEVAL web por-

tal. In Proceedings of the European Conference on Logics in Artificial Intelli-

gence, JELIA (LNCS 4160). Springer, 494–497. https://doi.org/10.1007/

11853886_45

[89] N. J. Nilsson. 2014. Principles of Artificial Intelligence. Morgan Kaufmann.

[90] F. A. Oliehoek and C. Amato. 2016. A Concise Introduction to Decentralized

POMDPs. Springer. https://doi.org/10.1007/978-3-319-28929-8

[91] F. A. Oliehoek, M. T. J. Spaan, and N. A. Vlassis. 2008. Optimal and approxi-

mate Q-value functions for decentralized POMDPs. Journal of Artificial Intel-

ligence Research 32 (2008), 289–353. https://doi.org/10.1613/jair.2447

[92] C. H. Papadimitriou. 1985. Games against nature. J. Comput. System Sci.

31, 2 (1985), 288–301. https://doi.org/10.1016/0022-0000(85)90045-5

[93] G. L. Peterson and J. H. Reif. 1979. Multiple-person alternation. In Proceed-

ings of the Annual Symposium on Foundations of Computer Science, FOCS.

IEEE Computer Society, 348–363. https://doi.org/10.1109/SFCS.1979.

25

[94] G. L. Peterson, J. H. Reif, and S. Azhar. 2001. Lower bounds for multiplayer

noncooperative games of incomplete information. Computers & Mathemat-

ics with Applications 41, 7 (2001), 957–992. https://doi.org/10.1016/

S0898-1221(00)00333-3

171

https://doi.org/10.1007/11853886_45
https://doi.org/10.1007/11853886_45
https://doi.org/10.1007/978-3-319-28929-8
https://doi.org/10.1613/jair.2447
https://doi.org/10.1016/0022-0000(85)90045-5
https://doi.org/10.1109/SFCS.1979.25
https://doi.org/10.1109/SFCS.1979.25
https://doi.org/10.1016/S0898-1221(00)00333-3
https://doi.org/10.1016/S0898-1221(00)00333-3

doi: 10.6342/NTU202101397

BIBLIOGRAPHY

[95] K. Pipatsrisawat and A. Darwiche. 2009. A new d-DNNF-based bound com-

putation algorithm for functional E-MAJSAT. In Proceedings of the Interna-

tional Joint Conference on Artificial Intelligence, IJCAI. AAAI Press, 590–

595. http://ijcai.org/Proceedings/09/Papers/104.pdf

[96] M. N. Rabe and L. Tentrup. 2015. CAQE: A certifying QBF solver. In Proceed-

ings of the International Conference on Formal Methods in Computer-Aided

Design, FMCAD. IEEE, 136–143. https://doi.org/10.1109/FMCAD.2015.

7542263

[97] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, and J. Henkel. 2016.

Architectural-space exploration of approximate multipliers. In Proceedings of

the International Conference on Computer-Aided Design, ICCAD. ACM, 80:1–

80:8. https://doi.org/10.1145/2966986.2967005

[98] T. Rejimon and S. Bhanja. 2005. Scalable probabilistic computing mod-

els using Bayesian networks. In Proceedings of the International Midwest

Symposium on Circuits and Systems, MWSCAS. IEEE, 712–715. https:

//doi.org/10.1109/MWSCAS.2005.1594200

[99] S. J. Russell and P. Norvig. 2020. Artificial Intelligence: A Modern Approach

(4th ed.). Pearson.

[100] R. Salmon and P. Poupart. 2020. On the relationship between stochastic

satisfiability and Markov decision processes. In Proceedings of the Conference

172

http://ijcai.org/Proceedings/09/Papers/104.pdf
https://doi.org/10.1109/FMCAD.2015.7542263
https://doi.org/10.1109/FMCAD.2015.7542263
https://doi.org/10.1145/2966986.2967005
https://doi.org/10.1109/MWSCAS.2005.1594200
https://doi.org/10.1109/MWSCAS.2005.1594200

doi: 10.6342/NTU202101397

BIBLIOGRAPHY

on Uncertainty in Artificial Intelligence, UAI. PMLR, 1105–1115. http:

//proceedings.mlr.press/v115/salmon20a.html

[101] T. Sang, F. Bacchus, P. Beame, H. A. Kautz, and T. Pitassi. 2004. Com-

bining component caching and clause learning for effective model counting.

In Proceedings of the International Conference on Theory and Applications

of Satisfiability Testing, SAT. 20–28. http://www.satisfiability.org/

SAT04/programme/21.pdf

[102] T. Sang, P. Beame, and H. A. Kautz. 2005. Heuristics for fast exact model

counting. In Proceedings of the International Conference on Theory and Ap-

plications of Satisfiability Testing, SAT (LNCS 3569). Springer, 226–240.

https://doi.org/10.1007/11499107_17

[103] T. Sang, P. Beame, and H. A. Kautz. 2005. Performing Bayesian inference by

weighted model counting. In Proceedings of the AAAI Conference on Artificial

Intelligence, AAAI. AAAI Press / The MIT Press, 475–482. http://www.

aaai.org/Library/AAAI/2005/aaai05-075.php

[104] C. Scholl and R. Wimmer. 2018. Dependency quantified Boolean formu-

las: An overview of solution methods and applications. In Proceedings of

the International Conference on Theory and Applications of Satisfiability

Testing, SAT (LNCS 10929). Springer, 3–16. https://doi.org/10.1007/

978-3-319-94144-8_1

[105] R. Schultz. 2003. Stochastic programming with integer variables. Mathe-

173

http://proceedings.mlr.press/v115/salmon20a.html
http://proceedings.mlr.press/v115/salmon20a.html
http://www.satisfiability.org/SAT04/programme/21.pdf
http://www.satisfiability.org/SAT04/programme/21.pdf
https://doi.org/10.1007/11499107_17
http://www.aaai.org/Library/AAAI/2005/aaai05-075.php
http://www.aaai.org/Library/AAAI/2005/aaai05-075.php
https://doi.org/10.1007/978-3-319-94144-8_1
https://doi.org/10.1007/978-3-319-94144-8_1

doi: 10.6342/NTU202101397

BIBLIOGRAPHY

matical Programming 97, 1-2 (2003), 285–309. https://doi.org/10.1007/

s10107-003-0445-z

[106] S. Sinha, A. Mishchenko, and R. K. Brayton. 2002. Topologically constrained

logic synthesis. In Proceedings of the International Conference on Computer-

Aided Design, ICCAD. ACM / IEEE Computer Society, 679–686. https:

//doi.org/10.1145/774572.774672

[107] F. Somenzi. 1998. CUDD: CU decision diagram package.

[108] L. J. Stockmeyer and A. R. Meyer. 1973. Word problems requiring exponential

time: Preliminary report. In Proceedings of the Annual Symposium on The-

ory of Computing, STOC. ACM, 1–9. https://doi.org/10.1145/800125.

804029

[109] T. Teige and M. Fränzle. 2010. Resolution for stochastic Boolean satisfiability.

In Proceedings of the International Conference on Logic for Programming,

Artificial Intelligence, and Reasoning, LPAR (LNCS 6397). Springer, 625–

639. https://doi.org/10.1007/978-3-642-16242-8_44

[110] L. Tentrup and M. N. Rabe. 2019. Clausal abstraction for DQBF. In Proceed-

ings of the International Conference on Theory and Applications of Satisfia-

bility Testing, SAT (LNCS 11628). Springer, 388–405. https://doi.org/

10.1007/978-3-030-24258-9_27

[111] G. S. Tseitin. 1983. On the complexity of derivation in propositional calculus.

174

https://doi.org/10.1007/s10107-003-0445-z
https://doi.org/10.1007/s10107-003-0445-z
https://doi.org/10.1145/774572.774672
https://doi.org/10.1145/774572.774672
https://doi.org/10.1145/800125.804029
https://doi.org/10.1145/800125.804029
https://doi.org/10.1007/978-3-642-16242-8_44
https://doi.org/10.1007/978-3-030-24258-9_27
https://doi.org/10.1007/978-3-030-24258-9_27

doi: 10.6342/NTU202101397

BIBLIOGRAPHY

In Automation of Reasoning. Springer, 466–483. https://doi.org/10.1007/

978-3-642-81955-1_28

[112] S. Venkataramani, A. Sabne, V. J. Kozhikkottu, K. Roy, and A. Raghunathan.

2012. SALSA: Systematic logic synthesis of approximate circuits. In Pro-

ceedings of the Annual Design Automation Conference, DAC. ACM, 796–801.

https://doi.org/10.1145/2228360.2228504

[113] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan. 2011. MACACO:

Modeling and analysis of circuits for approximate computing. In Proceedings of

the International Conference on Computer-Aided Design, ICCAD. IEEE Com-

puter Society, 667–673. https://doi.org/10.1109/ICCAD.2011.6105401

[114] L.-T. Wang, Y.-W. Chang, and K.-T. T. Cheng. 2009. Electronic Design

Automation: Synthesis, Verification, and Test (1st ed.). Morgan Kaufmann.

[115] R. Ye, T. Wang, F. Yuan, R. Kumar, and Q. Xu. 2013. On reconfiguration-

oriented approximate adder design and its application. In Proceedings of the

International Conference on Computer-Aided Design, ICCAD. IEEE, 48–54.

https://doi.org/10.1109/ICCAD.2013.6691096

175

https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1007/978-3-642-81955-1_28
https://doi.org/10.1145/2228360.2228504
https://doi.org/10.1109/ICCAD.2011.6105401
https://doi.org/10.1109/ICCAD.2013.6691096

	Acknowledgements
	Chinese Abstract
	Abstract
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Motivation and the research needs
	1.2 Our contributions
	1.3 An overview of the dissertation
	1.4 Data availability statement

	2 Related Work
	2.1 Probabilistic/Approximate design
	2.2 Stochastic Boolean satisfiability
	2.3 Model counting

	3 Background
	3.1 Propositional logic
	3.1.1 Conjunctive and disjunctive normal forms
	3.1.2 Boolean satisfiability

	3.2 Stochastic Boolean satisfiability
	3.3 Model counting
	3.3.1 Exact/Approximate model counting
	3.3.2 Weighted model counting

	4 Probabilistic Design Evaluation
	4.1 Preliminaries
	4.1.1 Boolean network
	4.1.2 Probability and random variables

	4.2 Modeling probabilistic design
	4.2.1 Probabilistic Boolean network
	4.2.2 Probabilistic property evaluation
	4.2.3 Extension to sequential probabilistic design

	4.3 Solving probabilistic property evaluation
	4.3.1 Solving MPPE and PPE via SSAT
	4.3.2 Solving PPE via weighted model counting
	4.3.3 Solving PPE via probabilistic model checking

	4.4 Discussion
	4.4.1 Probabilistic equivalence checking
	4.4.2 Prioritized output requirement
	4.4.3 Connection to approximate design analysis

	4.5 Evaluation
	4.5.1 Benchmark set
	4.5.2 Experimental setup
	4.5.3 Results

	5 Random-Exist Quantified SSAT
	5.1 Preliminaries
	5.1.1 Generalization of SAT/UNSAT minterms

	5.2 Solving random-exist quantified SSAT
	5.2.1 Minimal satisfying assignment
	5.2.2 Minimal conflicting assignment
	5.2.3 Weight computation
	5.2.4 Modification for approximate SSAT

	5.3 Applications
	5.3.1 Probability of success in planning
	5.3.2 Probabilistic circuit verification

	5.4 Evaluation
	5.4.1 Benchmark set
	5.4.2 Experimental setup
	5.4.3 Results

	6 Exist-Random Quantified SSAT
	6.1 Preliminaries
	6.1.1 Solving E-MAJSAT with weighted model counting
	6.1.2 Clause selection

	6.2 Clause-containment learning for E-MAJSAT
	6.2.1 Clause-strengthening heuristics
	6.2.2 Implementation details

	6.3 Evaluation
	6.3.1 Benchmark set
	6.3.2 Experimental setup
	6.3.3 Results

	7 Dependency SSAT
	7.1 Preliminaries
	7.1.1 Dependency quantified Boolean formula
	7.1.2 Decentralized POMDP

	7.2 Lifting SSAT to NEXPTIME-completeness
	7.2.1 Formulation
	7.2.2 Complexity proof

	7.3 Applications of DSSAT
	7.3.1 Analyzing probabilistic/approximate partial design
	7.3.2 Modeling Dec-POMDP

	8 Conclusion and Future Work
	Bibliography

